15-ketoprostaglandin-f2alpha has been researched along with Brain-Injuries* in 1 studies
1 other study(ies) available for 15-ketoprostaglandin-f2alpha and Brain-Injuries
Article | Year |
---|---|
Evidence for time-dependent maximum increase of free radical damage and eicosanoid formation in the brain as related to duration of cardiac arrest and cardio-pulmonary resuscitation.
Recovery of neurological function in patients following cardiac arrest and cardiopulmonary resuscitation (CPR) is a complex event. Free radical induced oxidative stress is supposed to be involved in this process. We studied levels of 8-iso-PGF2alpha (indicating oxidative injury) and 15-keto-dihydro-PGF2alpha (indicating inflammatory response) in venous plasma obtained from the jugular bulb in a porcine model of experimental cardiopulmonary resuscitation (CPR) where 2, 5, 8, 10 or 12 min of ventricular fibrillation (VF) was followed by 5 or 8 min of closed-chest CPR. A significant increase of 8-iso-PGF2alpha was observed immediately following restoration of spontaneous circulation in all experiments of various duration of VF and CPR. No such increase was seen in a control group. When compared between the groups there was a duration-dependent maximum increase of 8-iso-PGF2alpha which was greatest in animals subjected to the longest period (VF12 min + CPR8 min) of no or low blood flow. In contrast, the greatest increase of 15-keto-dihydro-PGF2alpha was observed in the 13 min group (VF8 min + CPR5 min). Thus, a time-dependent cerebral oxidative injury occurs in conjunction which cardiac arrest and CPR. Topics: Animals; Brain; Brain Injuries; Cardiopulmonary Resuscitation; Dinoprost; Eicosanoids; F2-Isoprostanes; Female; Free Radicals; Heart Arrest; Inflammation; Male; Oxidative Stress; Radioimmunoassay; Swine; Time Factors; Ventricular Fibrillation | 2003 |