15-hydroxy-5-8-11-13-eicosatetraenoic-acid has been researched along with Osteosarcoma* in 2 studies
2 other study(ies) available for 15-hydroxy-5-8-11-13-eicosatetraenoic-acid and Osteosarcoma
Article | Year |
---|---|
Tumor necrosis factor alpha stimulates arachidonic acid metabolism in human osteoblastic osteosarcomal cells.
The effects of tumor necrosis factor alpha (TNF-alpha) on arachidonic acid (AA) metabolism were investigated by prelabeling the human osteoblastic osteosarcoma cell line, G292, with [3H]AA. TNF-alpha differentially stimulates cyclooxygenase and lipoxygenase pathways of AA metabolism in a dose response manner in the cells. The highest concentration of TNF-alpha (10(-8)M) significantly increased the cyclooxygenase pathway, with prostaglandin E2 (PGE2) being a major product. However, at the lowest concentration (10(-10)M) of TNF-alpha, 15-hydroxyeicosatetraenoic acid (HETE) production was significantly increased, with no significant effects on the other identifiable products. When the concentration of TNF-alpha was increased to 10(-9) M leukotriene B4 (LTB4), 15-, 12-, and 5-HETE were significantly increased. The calcium ionophore A23187 (10(-6) M) significantly increased 15-HETE production, without significantly affecting cyclooxygenase metabolites. However, a combination of TNF-alpha (10(-8)M) and A23187 (10(-6)M) caused an inhibitory effect on each agent-induced PGE2 or 15-HETE production. Topics: Arachidonic Acid; Calcimycin; Dinoprostone; Dose-Response Relationship, Drug; Humans; Hydroxyeicosatetraenoic Acids; Indomethacin; Leukotriene B4; Lipoxygenase; Osteoblasts; Osteosarcoma; Prostaglandin-Endoperoxide Synthases; Tritium; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 1996 |
Effects of interleukin-1 alpha on arachidonic acid metabolism in human osteosarcoma osteoblastic cells.
The effects of interleukin-1 alpha (IL-1 alpha) on arachidonic acid (AA) metabolism were studied in the human osteosarcoma cell lines, G292 and SaOS-2. The cells were prelabeled with 3H-arachidonic acid. Radiolabeled metabolites were measured by reversed-phase high-pressure liquid chromatography with a radioactive detector. Indomethacin inhibited prostaglandin E2 (PGE2) production without affecting lipoxygenase (LO) products in G292 cells. In the G292 cells, IL-1 alpha (50 U/ml) induced a 10-fold increase in PGE2 production at all the incubation times tested, and a significant two-fold increase in 5 hydroxyeicosatetraenoic acid (HETE) formation after 48 h. These effects were not seen in SaOS-2 cells under identical conditions. These results suggest that, although some osteosarcomal cell lines may not respond directly to IL-1 with effects on AA metabolism, the mechanism of its action in others may involve modulation of both cyclooxygenase (CO) and LO pathways. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; 6-Ketoprostaglandin F1 alpha; Arachidonic Acid; Dinoprostone; Humans; Hydroxyeicosatetraenoic Acids; Indomethacin; Interleukin-1; Leukotriene B4; Lipoxygenase; Osteoblasts; Osteosarcoma; Tumor Cells, Cultured | 1993 |