15-hydroxy-5-8-11-13-eicosatetraenoic-acid and Acute-Disease

15-hydroxy-5-8-11-13-eicosatetraenoic-acid has been researched along with Acute-Disease* in 3 studies

Other Studies

3 other study(ies) available for 15-hydroxy-5-8-11-13-eicosatetraenoic-acid and Acute-Disease

ArticleYear
Lipoxygenase products in the urine correlate with renal function and body temperature but not with acute transplant rejection.
    Lipids, 2013, Volume: 48, Issue:2

    Acute transplant rejection is the leading cause of graft loss in the first months after kidney transplantation. Lipoxygenase products mediate pro- and anti-inflammatory actions and thus we aimed to correlate the histological reports of renal transplant biopsies with urinary lipoxygenase products concentrations to evaluate their role as a diagnostic marker. This study included a total of 34 kidney transplant recipients: 17 with an acute transplant rejection and 17 controls. LTE4, LTB4, 12-HETE and 15-HETE concentrations were measured by enzyme immunoassay. Urinary lipoxygenase product concentrations were not significantly changed during an acute allograft rejection. Nevertheless, LTB4 concentrations correlated significantly with the body temperature (P ≤ 0.05) 3 months after transplantation, and 12- and 15-HETE concentrations correlated significantly with renal function (P ≤ 0.05) 2 weeks after transplantation. In conclusion, our data show a correlation for LTB4 with the body temperature 3 months after transplantation and urinary 12- and 15-HETE concentrations correlate positively with elevated serum creatinine concentrations but do not predict acute allograft rejection.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Acute Disease; Adult; Body Temperature; Female; Graft Rejection; Humans; Hydroxyeicosatetraenoic Acids; Kidney; Kidney Transplantation; Leukotriene B4; Leukotriene E4; Lipoxygenase; Male; Middle Aged

2013
Cyclooxygenase and lipoxygenase metabolism in sodium taurocholate induced acute hemorrhagic pancreatitis in rats.
    Prostaglandins, 1993, Volume: 45, Issue:4

    Several studies have reported that prostanoids are involved in many of the physiopathological mechanisms underlying acute pancreatitis but their precise role in this disease remains to be established. The objective of this work is to evaluate the variation of local tissue production of prostanoids and lipoxygenase metabolites of arachidonic acid in acute pancreas inflammation induced by intraductal administration of 3.5% sodium taurocholate (0.1 ml/100 mg body weight) in rats. Pancreatic tissue levels of leukotriene B4 (LTB4), 15 hydroxyeicosatetraenoic acid (15-HETE), 6-keto prostaglandin F1 alpha (6-keto PGF1 alpha), thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) were determined by HPLC-RIA techniques at 5 and 60 minutes after induction of acute pancreatitis (AP). Prostanoids increased significantly at 5 minutes and LTB4 and 15-HETE at 60 minutes. These data confirm that the prostanoid imbalance could be considered as an early specific response of the pancreas to the inflammatory events characteristic of induced AP while the altered levels of the lipoxygenase products (LTB4 and 15-HETE) would be more of a nonspecific organ response associated to the high cellular infiltration rate and necrosis observed in the late phases of acute pancreatitis.

    Topics: 6-Ketoprostaglandin F1 alpha; Acute Disease; Animals; Dinoprostone; Hemorrhage; Hydroxyeicosatetraenoic Acids; Kinetics; Leukotriene B4; Lipoxygenase; Male; Pancreas; Pancreatitis; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Sprague-Dawley; Taurocholic Acid; Thromboxane B2

1993
Eicosanoids in acute and chronic psoriatic lesions: leukotriene B4, but not 12-hydroxy-eicosatetraenoic acid, is present in biologically active amounts in acute guttate lesions.
    The Journal of investigative dermatology, 1989, Volume: 92, Issue:6

    The biochemical changes underlying the clinical manifestations of psoriasis are unknown. Certain chemotactic eicosanoids derived from arachidonic acid metabolism have been suggested to play important roles in psoriasis, because of their presence in lesional psoriatic skin and their ability to elicit skin inflammation and to stimulate epidermal proliferation. The purpose of the present study was to elucidate which eicosanoids might be involved in the early phases of the inflammatory processes of psoriasis. Eicosanoids were analyzed in scale and in lesional skin without scale both in acute guttate and chronic plaque psoriatic lesions. Methods for identification of eicosanoids included reversed-phase high-performance liquid chromatography combined with radioimmunoassay. Leukotriene B4 was present in both acute guttate and chronic plaque skin lesions in biologically active amounts (acute guttate lesions: 18.7 +/- 7.1 ng/g wet tissue in scale and 3.2 +/- 1.5 ng/g wet tissue in lesional skin without scale; chronic plaque lesions: 33.1 +/- 9.7 ng/g wet tissue in scale and 5.3 +/- 2.0 ng/g wet tissue in lesional skin without scale). 12- and 15-hydroxy-eicosatetraenoic acid (HETE) reached biologically active concentrations only in scale of chronic plaque lesions (1,512 +/- 282 and 1,441 +/- 411 ng/g wet tissue, respectively). The level of prostaglandin E2 in chronic plaque lesions was similar to the level in normal skin, while the level in acute guttate lesions was increased twofold (71.0 +/- 14.8 ng/g wet tissue). These results demonstrate that leukotriene B4, but not 12-HETE, is present in acute guttate psoriatic skin lesions in concentrations able to exert biologic effects. Leukotriene B4 may therefore participate in inflammatory changes of acute psoriasis.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Acute Disease; Chromatography, High Pressure Liquid; Chronic Disease; Dinoprostone; Humans; Hydroxyeicosatetraenoic Acids; Leukotriene B4; Psoriasis; Radioimmunoassay; Skin

1989