15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid has been researched along with Edema* in 3 studies
3 other study(ies) available for 15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and Edema
Article | Year |
---|---|
N2 extenuates experimental ischemic stroke through platelet aggregation inhibition.
Thromboxane A2 (TXA2) can induce the platelet aggregation and lead to thrombosis. This will cause the low-reflow phenomenon after ischemic stroke and aggravate the damage of brain issues. Therefore, it is potential to develop the drugs inhibiting TXA2 pathway to treat cerebral ischemia.. This study aims to prove the protective effect of N2 (4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoic acid) on focal cerebral ischemia and reperfusion injury through platelet aggregation inhibition.. Middle cerebral artery occlusion/reperfusion (MCAO/R) is used as the animal model. Neurological deficit score, Morris water maze, postural reflex test, Limb-use asymmetry test, infarct volume, and water content were performed to evaluate the protective effect of N2 in MCAO/R rats. 9, 11-dieoxy-11α, 9α-methanoepoxyprostaglandin F2α (U46619) or adenosine diphosphate (ADP) was used as the inducer of platelet aggregation.. N2 can improve the motor function, learning and memory ability in MCAO/R rats while reducing the infarct volume. N2 can inhibit TXA2 formation but promote PGI2, and can inhibit platelet aggregation induced by U46619 and ADP. Further, N2 inhibits thrombosis with a minor adverse effect of bleeding than Clopidogrel. In conclusion, N2 can produce the protective effect on MCAO/R brain injury through inhibiting TXA2 formation, platelet aggregation and thrombosis. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenosine Diphosphate; Animals; Arteriovenous Shunt, Surgical; Blood Coagulation; Brain; Brain Ischemia; Edema; Enzyme-Linked Immunosorbent Assay; Epoprostenol; Female; Imidazoles; Male; Maze Learning; Platelet Aggregation; Rats; Rats, Sprague-Dawley; Stroke; Thrombosis; Thromboxane A2; Vanillic Acid | 2015 |
Subthreshold doses of specific phosphodiesterase type 3 and 4 inhibitors enhance the pulmonary vasodilatory response to nebulized prostacyclin with improvement in gas exchange.
Aerosolized prostacyclin (PGI(2)) has been suggested for selective pulmonary vasodilation, but its effect rapidly levels off after termination of nebulization. Stabilization of the second-messenger cAMP by phosphodiesterase (PDE) inhibition may offer a new strategy for amplification of the vasodilative response to nebulized PGI(2). In perfused rabbit lungs, continuous infusion of the thromboxane mimetic U46619 was used to establish stable pulmonary hypertension [increase in pulmonary arterial pressure (pPA) from approximately 7 to approximately 32 mm Hg], which is accompanied by progressive edema formation and severe disturbances in gas exchange with a predominance of shunt flow (increase from <2 to approximately 58%, as assessed by the multiple inert gas elimination technique). In the absence of PGI(2), dose-effect curves for intravascular and aerosol administration of the specific PDE3 inhibitor motapizone, the PDE4 inhibitor rolipram, and the dual-selective PDE3/4 inhibitor tolafentrine on pulmonary hemodynamics were established (potency rank order: rolipram > tolafentrine approximately motapizone; highest efficacy on coapplication of rolipram and motapizone). Ten-minute aerosolization of PGI(2) was chosen to effect a moderate pPA decrease (approximately 4 mm Hg; rapidly returning to prenebulization values within 10-15 min) with only a slight reduction in shunt flow (approximately 49%). Prior application of subthreshold doses of i.v. or inhaled PDE3 or PDE4 inhibitors, which per se did not affect pulmonary hemodynamics, caused prolongation of the post-PGI(2) decrease in pPA. The most effective approach, rolipram plus motapizone, amplified the maximum pPA decrease in response to PGI(2) to approximately 9 to 10 mm Hg, prolonged the post-PGI(2) vasorelaxation to >60 min, reduced the extent of lung edema formation by 50%, and decreased the shunt flow to approximately 19% (i.v. rolipram/motapizone) and 28% (aerosolized rolipram/motapizone). We conclude that lung PDE3/4 inhibition, achieved by intravascular or transbronchial administration of subthreshold doses of specific PDE inhibitors, synergistically amplifies the pulmonary vasodilatory response to inhaled PGI(2), concomitant with an improvement in ventilation-perfusion matching and a reduction in lung edema formation. The combination of nebulized PGI(2) and PDE3/4 inhibition may thus offer a new concept for selective pulmonary vasodilation, with maintenance of gas exchange in respiratory failure and pul Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Aerosols; Animals; Antihypertensive Agents; Cyclic AMP; Dose-Response Relationship, Drug; Drug Interactions; Edema; Epoprostenol; Female; Hemodynamics; Hypertension, Pulmonary; Lung; Male; Naphthyridines; Perfusion; Phosphodiesterase Inhibitors; Pyridazines; Rabbits; Rolipram; Time Factors; Vasoconstrictor Agents | 2000 |
Effects of inhaled versus intravenous vasodilators in experimental pulmonary hypertension.
Inhaled nitric oxide (NO) causes selective pulmonary vasodilation and improves gas exchange in acute lung failure. In experimental pulmonary hypertension, we compared the influence of the aerosolized vasodilatory prostaglandins (PG) PGI2 and PGE1 on vascular tone and gas exchange to that of infused prostanoids (PGI2, PGE1) and inhaled NO. An increase of pulmonary artery pressure (Ppa) from 8 to approximately 34 mmHg was provoked by continuous infusion of U-46619 (thromboxane A2 (TxA2) analogue) in blood-free perfused rabbit lungs. This was accompanied by formation of moderate lung oedema and severe ventilation-perfusion (V'/Q') mismatch, with predominance of shunt flow (>50%, assessed by the multiple inert gas elimination technique). When standardized to reduce the Pps by approximately 10 mmHg, inhaled NO (200 ppm), aerosolized PGI2 (4 ng x kg(-1) x min(-1)) and nebulized PGE1 (8 ng x kg(-1) x min(-1)) all reduced both pre- and postcapillary vascular resistance, but did not affect formation of lung oedema. All inhalative agents improved the V'/Q' mismatch and reduced shunt flow, the rank order of this capacity being NO > PGI2 > PGE1. In contrast, lowering of Ppa by intravascular administration of PGI2 and PGE1 did not improve gas exchange. "Supratherapeutic" doses of inhaled vasodilators in control lungs (400 ppm NO, 30 ng x kg(-1) x min(-1) of PGI2 or PGE1) did not provoke vascular leakage or affect the physiological V'/Q' matching. We conclude that aerosolization of prostaglandins I2 and E1 is as effective as inhalation of nitric oxide in relieving pulmonary hypertension. When administered via this route instead of being infused intravascularly, the prostanoids are capable of improving ventilation-perfusion matching, suggesting selective vasodilation in well-ventilated lung areas. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Administration, Inhalation; Aerosols; Alprostadil; Animals; Edema; Epoprostenol; Hypertension, Pulmonary; In Vitro Techniques; Muscle, Smooth, Vascular; Nitric Oxide; Prostaglandin Endoperoxides, Synthetic; Pulmonary Artery; Pulmonary Gas Exchange; Rabbits; Thromboxane A2; Vascular Resistance; Vasoconstrictor Agents; Vasodilator Agents; Ventilation-Perfusion Ratio | 1997 |