15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and Brain-Ischemia

15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid has been researched along with Brain-Ischemia* in 2 studies

Other Studies

2 other study(ies) available for 15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and Brain-Ischemia

ArticleYear
N2 extenuates experimental ischemic stroke through platelet aggregation inhibition.
    Thrombosis research, 2015, Volume: 136, Issue:6

    Thromboxane A2 (TXA2) can induce the platelet aggregation and lead to thrombosis. This will cause the low-reflow phenomenon after ischemic stroke and aggravate the damage of brain issues. Therefore, it is potential to develop the drugs inhibiting TXA2 pathway to treat cerebral ischemia.. This study aims to prove the protective effect of N2 (4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoic acid) on focal cerebral ischemia and reperfusion injury through platelet aggregation inhibition.. Middle cerebral artery occlusion/reperfusion (MCAO/R) is used as the animal model. Neurological deficit score, Morris water maze, postural reflex test, Limb-use asymmetry test, infarct volume, and water content were performed to evaluate the protective effect of N2 in MCAO/R rats. 9, 11-dieoxy-11α, 9α-methanoepoxyprostaglandin F2α (U46619) or adenosine diphosphate (ADP) was used as the inducer of platelet aggregation.. N2 can improve the motor function, learning and memory ability in MCAO/R rats while reducing the infarct volume. N2 can inhibit TXA2 formation but promote PGI2, and can inhibit platelet aggregation induced by U46619 and ADP. Further, N2 inhibits thrombosis with a minor adverse effect of bleeding than Clopidogrel. In conclusion, N2 can produce the protective effect on MCAO/R brain injury through inhibiting TXA2 formation, platelet aggregation and thrombosis.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenosine Diphosphate; Animals; Arteriovenous Shunt, Surgical; Blood Coagulation; Brain; Brain Ischemia; Edema; Enzyme-Linked Immunosorbent Assay; Epoprostenol; Female; Imidazoles; Male; Maze Learning; Platelet Aggregation; Rats; Rats, Sprague-Dawley; Stroke; Thrombosis; Thromboxane A2; Vanillic Acid

2015
Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries.
    Brain research, 2010, Feb-26, Volume: 1316

    Cerebral ischemia remains the key cause of morbidity and mortality after subarachnoid hemorrhage (SAH) with a pathogenesis that is still poorly understood. The aim of the present study was to examine the involvement of thromboxane A(2) receptors (TP) in the pathophysiology of cerebral ischemia after SAH in cerebral arteries. SAH was induced in rats by injecting 250 microl of blood into the prechiasmatic cistern. Two days after the SAH, cerebral arteries were harvested and contractile responses to the TP receptor agonist U46619 were investigated with myographs. In addition, the contractile responses were examined after pretreatment with selective TP receptor antagonist GR3219b. The TP receptor RNA and protein levels were analyzed by quantitative real-time PCR and immunohistochemistry, respectively. The global and regional cerebral blood flows (CBFs) were quantified with an autoradiographic technique. SAH resulted in enhanced contractile responses to U46619 as compared to sham. The TP receptor antagonist GR3219b abolished the enhanced contractile responses to U46619 observed after SAH. The TP receptor mRNA level was elevated after SAH as compared to sham. The level of TP receptor protein on the smooth muscle cells (SMCs) was increased in SAH compared to sham. Global and regional CBFs were reduced in SAH as compared to sham. The results demonstrate that SAH results in CBF reduction and this is associated with the enhanced expression of TP receptors in the SMC of cerebral arteries and microvessels.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Autoradiography; Brain; Brain Ischemia; Cerebral Arteries; Cerebrovascular Circulation; Disease Models, Animal; Immunohistochemistry; In Vitro Techniques; Male; Muscle Contraction; Muscle, Smooth, Vascular; Polymerase Chain Reaction; Rats; Rats, Sprague-Dawley; Receptors, Thromboxane A2, Prostaglandin H2; RNA, Messenger; Subarachnoid Hemorrhage; Time Factors; Vasoconstrictor Agents

2010