15-deoxyprostaglandin-j2 has been researched along with Inflammation* in 34 studies
2 review(s) available for 15-deoxyprostaglandin-j2 and Inflammation
Article | Year |
---|---|
15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling.
15-deoxy-Δ(12,14)-prostagandin J(2) (15d-PGJ2) is produced in the inflamed cells and tissues as a consequence of upregulation of cyclooxygenase-2 (COX-2). 15d-PGJ2 is known to be the endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ) with multiple physiological properties. Though one of the terminal products of the COX-2-catalyzed reactions, this cyclopentenone prostaglandin exerts potent anti-inflammatory actions, in part, by antagonizing the activities of pro-inflammatory transcription factors, such as NF-κB, STAT3, and AP-1, while stimulating the anti-inflammatory transcription factor Nrf2. These effects are not necessarily dependent on its activation of PPARγ, but often involves direct interaction with the above signaling molecules and their regulators. The locally produced 15d-PGJ2 is also involved in the resolution of inflammatory responses. Thus, 15d-PGJ2, especially formed during the late phase of inflammation, might inhibit cytokine secretion and other events by antigen-presenting cells like dendritic cells or macrophages. 15d-PGJ2 can also affect the priming and effector functions of T lymphocytes and induce their apoptotic cell death. These represent a negative feedback explaining how once-initiated immunologic and inflammatory responses are switched off and terminated. In this context, 15d-PGJ2 and its synthetic derivatives have therapeutic potential for the treatment of inflammatory disorders. Topics: Animals; Cyclooxygenase 2; Gene Expression Regulation; Inflammation; Molecular Structure; Prostaglandin D2; Signal Transduction | 2011 |
15d-PGJ2: the anti-inflammatory prostaglandin?
15-Deoxy-Delta-12,14-prostaglandin J2 (15d-PGJ2) is the most recently discovered prostaglandin. This cyclopentanone, the dehydration end product of PGD2, differs from other prostaglandins in several respects. There is no specific prostaglandin synthase (PGS) leading to 15d-PGJ2 production and no specific 15d-PGJ2 receptor has been identified to date. Instead, 15d-PGJ2 has been shown to act via PGD2 receptors (DP1 and DP2) and through interaction with intracellular targets. In particular, 15d-PGJ2 is recognized as the endogenous ligand for the intranuclear receptor PPARgamma. This property is responsible for many of the 15d-PGJ2 anti-inflammatory functions. In this review, we summarize the current understanding of 15d-PGJ2 synthesis, biology and main effects both in molecular physiology and pathological states. Topics: Animals; Autoimmune Diseases; Humans; Inflammation; NF-kappa B; PPAR gamma; Prostaglandin D2; Prostaglandin-Endoperoxide Synthases | 2005 |
32 other study(ies) available for 15-deoxyprostaglandin-j2 and Inflammation
Article | Year |
---|---|
Cyclopentenone Prostaglandins and Structurally Related Oxidized Lipid Species Instigate and Share Distinct Pro- and Anti-inflammatory Pathways.
Oxidized lipids play a critical role in a variety of diseases with two faces: pro- and anti-inflammatory. The molecular mechanisms of this Janus-faced activity remain largely unknown. Here, we have identified that cyclopentenone-containing prostaglandins such as 15d-PGJ2 and structurally related oxidized phospholipid species possess a dual and opposing bioactivity in inflammation, depending on their concentration. Exposure of dendritic cells (DCs)/macrophages to low concentrations of such lipids before Toll-like receptor (TLR) stimulation instigates an anti-inflammatory response mediated by nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent inhibition of nuclear factor κB (NF-κB) activation and downstream targets. By contrast, high concentrations of such lipids upon TLR activation of DCs/macrophages result in inflammatory apoptosis characterized by mitochondrial depolarization and caspase-8-mediated interleukin (IL)-1β maturation independently of Nrf2 and the classical inflammasome pathway. These results uncover unexpected pro- and anti-inflammatory activities of physiologically relevant lipid species generated by enzymatic and non-enzymatic oxidation dependent on their concentration, a phenomenon known as hormesis. Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Caspase 8; CD40 Antigens; Cell Death; Cell Differentiation; Cyclopentanes; Dendritic Cells; Inflammasomes; Inflammation; Interleukins; Kelch-Like ECH-Associated Protein 1; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Mitochondria; Mitogen-Activated Protein Kinases; NF-E2-Related Factor 2; NF-kappa B; Oxidation-Reduction; Phenotype; Prostaglandin D2; Prostaglandins; Signal Transduction; Th1 Cells; Toll-Like Receptors; Transcription, Genetic; Up-Regulation | 2020 |
Serum PGE2, 15d-PGJ, PPARγ and CRP levels in patients with schizophrenia.
Many hypotheses have been proposed for the development of schizophrenia, including the one proposing that exogenous and endogenous factors are linked to inflammatory processes. There is strong evidence about the immunological and inflammatory dysfunction in schizophrenia. In this study, we aimed to measure serum 15-deoxy-delta(12,14)-prostaglandin J (15d-PGJ), peroxisome proliferator-activated receptor gamma(PPARγ), prostaglandin E2 (PGE2) and C-reactive protein (CRP) levels. Forty-four patients and 39 healthy volunteers were included in the study. Serum PGE2, 15d-PGJ, PPARγ and CRP levels were measured in both the groups. Demographic data forms were filled out for the patient group, and the Positive and Negative Syndrome Scale, Clinical Global Impression-Severity scale and Calgary Depression scale were used to assess patients' clinical status. Serum PGE2, 15d-PGJ and PPARγ levels were found to be significantly lower in patients with schizophrenia than in healthy controls. There was no significant relationship between the serum PGE2, 15d-PGJ and PPARγ levels and CRP levels.In this study, the evidence of systemic inflammatory conditions in patients with schizophrenia was found. The duration of the disease has been found to be the only variable that independently affects all three biomarker levels in the patients with schizophrenia. Topics: Adult; Biomarkers; C-Reactive Protein; Dinoprostone; Female; Humans; Inflammation; Male; Middle Aged; PPAR gamma; Prostaglandin D2; Schizophrenia | 2019 |
Regulation of inflammatory pathways in schizophrenia: A comparative study with bipolar disorder and healthy controls.
Immune-inflammatory processes have been implicated in schizophrenia (SCH), but their specificity is not clear.. To identify potential differential intra-/intercellular biochemical pathways controlling immune-inflammatory response and their oxidative-nitrosative impact on SCH patients, compared with bipolar disorder (BD) patients and healthy controls (HC).. Cross-sectional, naturalistic study of a cohort of SCH patients (n=123) and their controls [BD (n=102) and HC (n=80)].. ANCOVA (or Quade test) controlling for age and gender when comparing the three groups, and controlling for age, gender, length of illness, cigarettes per day, and body mass index (BMI) when comparing SCH and BD.. Pro-inflammatory biomarkers: Expression of COX-1 was statistically higher in SCH and BD than HC (P<0.0001; P<0.0001); NFκB and PGE2 were statistically higher in SCH compared with BD (P=0.001; P<0.0001) and HC (P=0.003; P<0.0001); NLRP3 was higher in BD than HC (P=0.005); and CPR showed a gradient among the three groups. Anti-inflammatory biomarkers: BD patients had lower PPARγ and higher 15d-PGJ2 levels than SCH (P=0.005; P=0.008) and HC (P=0.001; P=0.001). Differences between SCH and BD: previous markers of SCH (NFκB and PGE2) and BD (PPARγ and 15d-PGJ2) remained statistically significant and, interestingly, iNOS and COX-2 (pro-inflammatory biomarkers) levels were statistically higher in SCH than BD (P=0.019; P=0.040).. This study suggests a specific immune-inflammatory biomarker pattern for established SCH (NFκB, PGE2, iNOS, and COX-2) that differentiates it from BD and HC. In future, their pharmacological modulation may constitute a promising therapeutic target. Topics: Adult; Biomarkers; Bipolar Disorder; Case-Control Studies; Cross-Sectional Studies; Female; Humans; Inflammation; Male; Middle Aged; PPAR gamma; Prostaglandin D2; Schizophrenia; Schizophrenic Psychology; Young Adult | 2018 |
15d-PGJ
Gout arthritis (GA) is a painful inflammatory disease in response to monosodium urate (MSU) crystals in the joints. 15deoxy-Δ Topics: Animals; Antioxidants; Arthritis, Experimental; Arthritis, Gouty; Inflammation; Male; Mice; Mice, Inbred C57BL; Nanocapsules; Oxidative Stress; Pain; PPAR gamma; Prostaglandin D2; Uric Acid | 2018 |
Effect of 15-Deoxy-Δ
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the major metabolites from prostaglandin D2 in arachidonic acid metabolic pathway, has potential anti-inflammatory properties. The objective of this study was to explore the effects of 15d-PGJ2-loaded poly(D,L-lactide-co-glycolide) nanocapsules (15d-PGJ2-NC) on inflammatory responses and bone regeneration in local bone defect.. The study was conducted on 96 Wistar rats from June 2014 to March 2016. Saline, unloaded nanoparticles, free 15d-PGJ2or 15d-PGJ2-NC, were delivered through a collagen vehicle inside surgically created transcortical defects in rat femurs. Interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the surrounding soft tissue were analyzed by Western blot and in the defect by quantitative real-time polymerase chain reaction over 14 days. Simultaneously, bone morphogenetic protein-6 (BMP-6) and platelet-derived growth factor-B (PDGF-B) messenger RNA (mRNA) in the defect were examined. New bone formation and EphrinB2 and osteoprotegerin (OPG) protein expression in the cortical defect were observed by Masson's Trichrome staining and immunohistochemistry over 28 days. Data were analyzed by one-way analysis of variance. Least-significant difference and Dunnett's T3 methods were used with a bilateral P< 0.05.. Application of l5d-PGJ2-NC (100 μg/ml) in the local bone defect significantly decreased IL-6, IL-1β, and TNF-α mRNA and protein, compared with saline-treated controls (P < 0.05). l5d-PGJ2-NC upregulated BMP-6 and PDGF-B mRNA (P < 0.05). New bone formation was observed in the cortical defect in l5d-PGJ2-NC-treated animals from 7th day onward (P < 0.001). Expression of EphrinB2 and OPG presented early on day 3 and persisted through day 28 in 15d-PGJ2-NC group (P < 0.05).. Stable l5d-PGJ2-NC complexes were prepared that could attenuate IL-6, IL-1β, and TNF-α expression, while increasing new bone formation and growth factors related to bone regeneration. Topics: Animals; Bone Morphogenetic Protein 6; Bone Regeneration; Inflammation; Interleukin-1beta; Interleukin-6; Male; Platelet-Derived Growth Factor; Prostaglandin D2; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha | 2017 |
BDNF and NGF Signalling in Early Phases of Psychosis: Relationship With Inflammation and Response to Antipsychotics After 1 Year.
Previous studies have indicated systemic deregulation of the proinflammatory or anti-inflammatory balance in individuals with first-episode psychosis (FEP) that persists 12 months later. To identify potential risk/protective factors and associations with symptom severity, we assessed possible changes in plasma levels of neurotrophins (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) and their receptors in peripheral blood mononuclear cells (PBMCs). Expression of the 2 forms of BDNF receptors (active TrkB-FL and inactiveTrkB-T1) in PBMCs of FEP patients changed over time, TrkB-FL expression increasing by 1 year after diagnosis, while TrkB-T1 expression decreased. The TrkB-FL/TrkB-T1 ratio (hereafter FL/T1 ratio) increased during follow-up in the nonaffective psychosis group only, suggesting different underlying pathophysiological mechanisms in subgroups of FEP patients. Further, the expression of the main NGF receptor, TrkA, generally increased in patients at follow-up. After adjusting for potential confounders, baseline levels of inducible isoforms of nitric oxide synthase, cyclooxygenase, and nuclear transcription factor were significantly associated with the FL/T1 ratio, suggesting that more inflammation is associated with higher values of this ratio. Interestingly, the FL/T1 ratio might have a role as a predictor of functioning, a regression model of functioning at 1 year suggesting that the effect of the FL/T1 ratio at baseline on functioning at 1 year depended on whether patients were treated with antipsychotics. These findings may have translational relevance; specifically, it might be useful to assess the expression of TrkB receptor isoforms before initiating antipsychotic treatment in FEPs. Topics: Adolescent; Adult; Affective Disorders, Psychotic; Antipsychotic Agents; Brain-Derived Neurotrophic Factor; Case-Control Studies; Cyclooxygenase 2; Female; Humans; Inflammation; Leukocytes, Mononuclear; Longitudinal Studies; Male; Nerve Growth Factor; NF-kappa B; Nitric Oxide Synthase Type II; Prognosis; Prostaglandin D2; Protein Isoforms; Psychotic Disorders; Receptor, trkA; Receptor, trkB; Regression Analysis; Signal Transduction; Young Adult | 2016 |
Cognition and psychopathology in first-episode psychosis: are they related to inflammation?
Cognitive deficits are present from the onset of psychosis and are considered a core feature of the disorder. Increasing evidence suggests that cognitive function is associated with inflammatory processes. This study evaluated the association between cognition and inflammatory biomarkers in first-episode psychosis (FEP), in order to identify cognitive phenotypes from inflammatory expression profiles.. A case-control study of 92 FEP patients and 80 matched controls was used. Neurocognitive assessment, including verbal ability, sustained attention, verbal memory, working memory and executive function, was performed. The expression of pro- and anti-inflammatory mediators of the main intracellular inflammatory pathway was measured in peripheral blood mononuclear cells and plasma.. FEP patients performed worse in all cognitive domains compared to controls and had higher expression of pro-inflammatory mediators and lower expression of anti-inflammatory mediators. In the FEP group, cognition and psychopathology were associated with inflammation. Hierarchical regression analysis showed that association between the anti-inflammatory prostaglandin 15d-PGJ2 and sustained attention on one hand, and COX-2 expression and executive function on the other, were statistically significant.. Our study provides evidence for an association between anti-inflammatory biomarkers and cognition in FEP. The identification of a subgroup of patients based on these measures could be useful to guide treatment programmes by providing tools to select a personalized treatment approach, but longitudinal studies are needed before. In the future, establishment of biomarkers linked to cognition would be useful to monitor the course of cognitive impairment, but substantially more data will be required. Determination of IκBα, the inhibitory protein of the pro-inflammatory transcription factor NFκB, could be useful in early phases to assess clinical severity. Topics: Adolescent; Adult; Case-Control Studies; Child; Cognitive Dysfunction; Cyclooxygenase 2; Executive Function; Female; Humans; Inflammation; Male; Prostaglandin D2; Psychotic Disorders; Young Adult | 2016 |
Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.
Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of proinflammatory cytokines. Topics: Animals; Cell Movement; Inflammation; Lung; Lung Injury; Male; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Pneumonia, Aspiration; Prostaglandin D2; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha | 2016 |
Effect of Salusin-β on Peroxisome Proliferator-Activated Receptor Gamma Gene Expression in Vascular Smooth Muscle Cells and its Possible Mechanism.
salusin-β is considered to be a potential pro-atherosclerotic factor. Regulation and function of vascular smooth muscle cells (VSMCs) are important in the progression of atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARγ) exerts a vascular protective role beyond its metabolic effects. Salusin-β has direct effects on VSMCs. The aim of the present study was to assess the effect of salusin-β on PPARγ gene expression in primary cultured rat VSMCs.. Western blotting analysis, real-time PCR and transient transfection approach were used to determine expression of target proteins. Specific protein knockdown was performed with siRNA transfection. Cell proliferation was determined by 5-bromo-2'-deoxyuridine incorporation. The levels of inflammation indicators interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined using enzyme-linked immunosorbent assay.. Salusin-β negatively regulated PPARγ gene expression at protein, mRNA and gene promoter level in VSMCs. The inhibitory effect of salusin-β on PPARγ gene expression contributed to salusin-β-induced VSMCs proliferation and inflammation in vitro. IκBα-NF-κB activation, but not NF-κB p50 or p65, mediated the salusin-β-induced inhibition of PPARγ gene expression. Salusin-β induced nuclear translocation of histone deacetylase 3 (HDAC3). HDAC3 siRNA prevented salusin-β-induced PPARγ reduction. Nuclear translocation of HDAC3 in response to salusin-β was significantly reversed by an IκBα inhibitor BAY 11-7085. Furthermore, IκBα-HDAC3 complex was present in the cytosol of VSMCs but interrupted after salusin-β treatment.. IκBα-HDAC3 pathway may contribute to salusin-β-induced inhibition of PPARγ gene expression in VSMCs. Topics: Animals; Cell Nucleus; Cell Proliferation; Down-Regulation; Gene Expression Regulation; Histone Deacetylase Inhibitors; Histone Deacetylases; I-kappa B Proteins; Inflammation; Intercellular Signaling Peptides and Proteins; Ligands; Male; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; NF-kappa B; NF-KappaB Inhibitor alpha; PPAR gamma; Prostaglandin D2; Protein Transport; Rats, Sprague-Dawley; RNA, Small Interfering | 2015 |
15-Deoxy-prostaglandin J2 anti-inflammation in a rat model of chronic obstructive pulmonary disease and human bronchial epithelial cells via Nrf2 activation.
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates antioxidant and anti-inflammatory genes, and it plays a crucial role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Moreover, 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) plays a protective role against oxidative stress and inflammation both in vivo and in vitro. In a previous study, we found that 15d-PGJ2 increased the expression of Nrf2 in a COPD rat model. This study aims to elucidate the role of 15d-PGJ2 in COPD pathogenesis and the relationship between Nrf2 and human bronchial epithelial (HBE) cells. Normal HBE (HBE) cells were cultured. Following cigarette smoke extract (CSE) stimulation, pre-incubation with or without small interfering RNA (siRNA) Nrf2, and stimulation with or without 15d-PGJ2, the expression levels of Nrf2, NF-κBp65, and IL-8 were detected by reverse transcription-polymerase chain reaction and western blot, respectively. The expression of NF-κBp65 and IL-8 in CSE-stimulated normal HBE cells was inhibited by 15d-PGJ2 at both the mRNA level and the protein level. Moreover, the expression of Nrf2 in normal HBE cells was improved by 15d-PGJ2 at both the mRNA level and the protein level. However, the inhibitory or improving effects of 15d-PGJ2 were disengaged by siRNA Nrf2 at both the mRNA level and the protein level. 15d-PGJ2 possesses anti-inflammatory properties in the pathogenesis of COPD, and HBE cells stimulated by CSE via Nrf2 activation. Topics: Animals; Anti-Inflammatory Agents; Bronchi; Cells, Cultured; Epithelial Cells; Humans; Inflammation; Male; Models, Animal; NF-E2-Related Factor 2; Oxidative Stress; Prostaglandin D2; Pulmonary Disease, Chronic Obstructive; Rats; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Transcription Factor RelA | 2015 |
Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia.
Schizophrenia is a chronic syndrome of unknown etiology, predominantly defined by signs of psychosis. The onset of the disorder occurs typically in late adolescence or early adulthood. Efforts to study pathophysiological mechanisms in early stages of the disease are crucial in order to prompt intervention.. Case-control study of first-episode psychotic (FEP) patients and matched controls. We recruited 117 patients during the first year after their FEP according to the DSM-IV criteria and recruited 106 gender-, race-, and age-matched controls between September 2010 and June 2011.. Biochemical studies carried out in peripheral mononuclear blood cells (PMBC) and plasma evidence a significant increase in intracellular components of a main proinflammatory pathway, along with a significant decrease in the anti-inflammatory ones. Multivariate logistic regression analyses identified the expression of inducible isoforms of nitric oxide synthase and cyclooxygenase in PMBC and homocysteine plasma levels as the most reliable potential risk factors and the inhibitor of the inflammatory transcription factor NFκB, IκBα, and the anti-inflammatory prostaglandin 15d-PGJ2 as potential protection factors.. Taken as a whole, the results of this study indicate robust phenotypical differences at the cellular machinery level in PMBC of patients with FEP. Although more scientific evidence is needed, the determination of multiple components of pro- and anti-inflammatory cellular pathways including the activity of nuclear receptors has interesting potential as biological markers and potential risk/protective factors for FEP. Due to its soluble nature, a notable finding in this study is that the anti-inflammatory mediator 15d-PGJ2 might be used as plasmatic biomarker for first episodes of psychosis. Topics: Adolescent; Adult; Biomarkers; Case-Control Studies; Female; Humans; Immunity, Cellular; Inflammation; Male; Phenotype; Prostaglandin D2; Psychotic Disorders; Risk Factors; Schizophrenia; Time Factors; Young Adult | 2014 |
15-deoxy-Δ¹²,¹⁴-PGJ₂ promotes inflammation and apoptosis in cardiomyocytes via the DP2/MAPK/TNFα axis.
Prostaglandins (PGs), lipid autacoids derived from arachidonic acid, play a pivotal role during inflammation. PGD₂ synthase is abundantly expressed in heart tissue and PGD₂ has recently been found to induce cardiomyocyte apoptosis. PGD₂ is an unstable prostanoid metabolite; therefore the objective of the present study was to elucidate whether its final dehydration product, 15-deoxy-Δ¹²,¹⁴-PGJ₂ (15d-PGJ₂, present at high levels in ischemic myocardium) might cause cardiomyocyte damage.. Using specific (ant)agonists we show that 15d-PGJ₂ induced formation of intracellular reactive oxygen species (ROS) and phosphorylation of p38 and p42/44 MAPKs via the PGD2 receptor DP2 (but not DP1 or PPARγ) in the murine atrial cardiomyocyte HL-1 cell line. Activation of the DP2-ROS-MAPK axis by 15d-PGJ₂ enhanced transcription and translation of TNFα and induced apoptosis in HL-1 cardiomyocytes. Silencing of TNFα significantly attenuated the extrinsic (caspase-8) and intrinsic apoptotic pathways (bax and caspase-9), caspase-3 activation and downstream PARP cleavage and γH2AX activation. The apoptotic machinery was unaffected by intracellular calcium, transcription factor NF-κB and its downstream target p53. Of note, 9,10-dihydro-15d-PGJ₂ (lacking the electrophilic carbon atom in the cyclopentenone ring) did not activate cellular responses. Selected experiments performed in primary murine cardiomyocytes confirmed data obtained in HL-1 cells namely that the intrinsic and extrinsic apoptotic cascades are activated via DP2/MAPK/TNFα signaling.. We conclude that the reactive α,β-unsaturated carbonyl group of 15d-PGJ₂ is responsible for the pronounced upregulation of TNFα promoting cardiomyocyte apoptosis. We propose that inhibition of DP2 receptors could provide a possibility to modulate 15d-PGJ₂-induced myocardial injury. Topics: Animals; Apoptosis; Cells, Cultured; Inflammation; MAP Kinase Signaling System; Mice; Myocytes, Cardiac; Prostaglandin D2; Receptors, Immunologic; Receptors, Prostaglandin; Tumor Necrosis Factor-alpha | 2014 |
Modulation of GSTP1-1 oligomerization by electrophilic inflammatory mediators and reactive drugs.
Glutathione S transferase P1-1 plays a key role in the metabolism of inflammatory mediators and drugs, thus modulating the inflammatory response. Active GSTP1-1 is a homodimer with cysteine residues close to the active site that can undergo oligomerization in response to stress, a process that affects enzyme activity and interactions with signaling and redox-active proteins. Cyclopentenone prostaglandins (cyPG) are endogenous reactive lipid mediators that participate in the regulation of inflammation and may covalently modify proteins through Michael addition. cyPG with dienone structure, which can bind to vicinal cysteines, induce an irreversible oligomerization of GSTP1-1. Here we have characterized the oligomeric state of GSTP1-1 in Jurkat cells treated with 15-deoxy-Δ12,14-PGJ Topics: Cell-Free System; Cyclopentanes; Glutathione S-Transferase pi; Humans; Hydrocarbons, Aromatic; Inflammation; Inflammation Mediators; Jurkat Cells; Metabolic Detoxication, Phase II; Molecular Targeted Therapy; Oxidation-Reduction; Prostaglandin D2; Protein Multimerization; Reactive Oxygen Species; Signal Transduction | 2013 |
Early increase in alveolar macrophage prostaglandin 15d-PGJ2 precedes neutrophil recruitment into lungs of cytokine-insufflated rats.
Early detection and prevention is an important goal in acute respiratory distress syndrome research. We determined the concentration of the anti-inflammatory 15-deoxy-Δ(12,14)-prostaglandin-J2 (15d-PGJ2) and other components of the cyclopentenone prostaglandin cascade in relation to lung inflammation in cytokine (IL-1/LPS)-insufflated rats. We found that 15d-PGJ2 levels increase in the bronchoalveolar lavage (BAL) fluid of rats insufflated with cytokines 2 h before. BAL 15d-PGJ2 increases preceded neutrophil recruitment, lung injury, and oxidative stress in the lungs of cytokine-insufflated rats. 15d-PGJ2 was localized in alveolar macrophages that decreased following cytokine insufflation. 15d-PGJ2 may constitute an early biomarker of lung inflammation and may reflect an endogenous attempt to regulate ongoing inflammation in macrophages and elsewhere after cytokine insufflation. Topics: Animals; Biomarkers; Bronchoalveolar Lavage Fluid; Cell Count; Cytokines; Inflammation; Insufflation; L-Lactate Dehydrogenase; Lipopolysaccharides; Lung; Macrophages, Alveolar; Neutrophil Infiltration; Oxidative Stress; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Respiratory Distress Syndrome | 2013 |
PPAR-γ agonists, mainly 15d-PGJ(2), reduce eosinophil recruitment following allergen challenge.
We evaluate the immunomodulation of Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists 15d-PGJ(2) and rosiglitazone (RGZ) in a model of chronic eosinophilia. 15d-PGJ(2) and RGZ significantly reduce eosinophil migration into the peritoneal cavity and down-regulate the eosinopoiesis. The synthesis of IL-5 was decreased after the treatment with 15d-PGJ(2) and RGZ corroborating with the eosinophil migration inhibition. However, IgE was decreased only after the administration of 15d-PGJ(2) in part due to B-cell inhibition. We also observed a decrease in the synthesis of IL-33, IL-17 and IL-23, suggesting that besides the modulation of Th2 pattern, there is a modulation via IL-23 and IL-17 suggesting a role of these cytokines in the eosinophil recruitment. In fact IL-17(-/-) mice failed to develop an eosinophilic response. Altogether, the results showed that PPAR-γ agonists mainly 15d-PGJ(2), have therapeutic efficacy in eosinophil-induced diseases with an alternative mechanism of control, via IL-23/IL-17 and IL-33. Topics: Allergens; Animals; Cell Movement; Cell Proliferation; Disease Models, Animal; Eosinophilia; Eosinophils; Flow Cytometry; Immunoglobulin E; Inflammation; Interleukins; Leukocyte Count; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; PPAR gamma; Prostaglandin D2; Rosiglitazone; Thiazolidinediones | 2012 |
The indirect antinociceptive mechanism of 15d-PGJ2 on rheumatoid arthritis-induced TMJ inflammatory pain in rats.
Inflammation of the temporomandibular joint (TMJ) induced by rheumatoid arthritis (RA) have resulted in persistent pain and caused distress to many patients. Considering that not all patients respond to traditional drugs therapy to RA and it has demonstrated that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) into TMJ has a potential peripheral antinociceptive effect, the aim of this study was to evaluate the peripheral effect of 15d-PGJ2 in RA-induced TMJ inflammatory hypernociception.. Antigen-induced arthritis (AIA) was generated in rats with methylated bovine serum albumin (mBSA). RA-induced TMJ hypernociception was assessed by measuring the behavioural nociceptive responses. After behavioural experiments, the animals were terminally anaesthetized and periarticular tissues were removed and homogenized. The supernatants were used to evaluate the levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and keratinocyte-derived chemokine (KC) by enzyme-linked immunosorbent assay as well the expression of PKCε and PKA by western blotting analysis.. The intra-articular injection of mBSA, but not phosphate buffered saline (control), in immunized rats induced dose- and time-dependent behavioural nociceptive responses in which the peak of nociceptive responses were obtained by using 10 μg/TMJ of mBSA after 24 h. Pretreatment with 15d-PGJ2 (30, 100 and 300 ng/TMJ) inhibited the RA-induced TMJ inflammatory hypernociception. In addition, 15d-PGJ2 reduced the RA-induced release of TNF-α, IL-1β and KC (p < 0.05) as well the expression of PKA and PKCε (p < 0.05).. In the present study, we demonstrated that 15d-PGJ2 was able to reduce the RA-induced TMJ inflammatory hypernociception by an indirect mechanism. This antinociceptive effect is in part due to decrease of TNF-α, IL-1β and KC levels and PKA/PKCε expression in the TMJ. Topics: Analgesics; Animals; Arthritis, Experimental; Arthritis, Rheumatoid; Behavior, Animal; Chemokines; Cyclic AMP-Dependent Protein Kinases; Inflammation; Interleukin-1beta; Male; Pain Measurement; Prostaglandin D2; Protein Kinase C-epsilon; Rats; Rats, Wistar; Temporomandibular Joint Disorders; Treatment Outcome; Tumor Necrosis Factor-alpha | 2012 |
Observation of two modes of inhibition of human microsomal prostaglandin E synthase 1 by the cyclopentenone 15-deoxy-Δ(12,14)-prostaglandin J(2).
Microsomal prostaglandin E synthase 1 (MPGES1) is an enzyme that produces the pro-inflammatory molecule prostaglandin E(2) (PGE(2)). Effective inhibitors of MPGES1 are of considerable pharmacological interest for the selective control of pain, fever, and inflammation. The isoprostane, 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a naturally occurring degradation product of prostaglandin D(2), is known to have anti-inflammatory properties. In this paper, we demonstrate that 15d-PGJ(2) can inhibit MPGES1 by covalent modification of residue C59 and by noncovalent inhibition through binding at the substrate (PGH(2)) binding site. The mechanism of inhibition is dissected by analysis of the native enzyme and the MPGES1 C59A mutant in the presence of glutathione (GSH) and glutathione sulfonate. The location of inhibitor adduction and noncovalent binding was determined by triple mass spectrometry sequencing and with backbone amide H/D exchange mass spectrometry. The kinetics, regiochemistry, and stereochemistry of the spontaneous reaction of GSH with 15d-PGJ(2) were determined. The question of whether the anti-inflammatory properties of 15d-PGJ(2) are due to inhibition of MPGES1 is discussed. Topics: Anti-Inflammatory Agents; Binding Sites; Glutathione; Humans; Inflammation; Intramolecular Oxidoreductases; Mass Spectrometry; Microsomes; Prostaglandin D2; Prostaglandin-E Synthases | 2012 |
15d-PGJ2-loaded in nanocapsules enhance the antinociceptive properties into rat temporomandibular hypernociception.
To verify whether the nanoencapsulation of 15d-PGJ(2) in poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules (15d-PGJ(2)-NC) might potentialize its antinociceptive activity into rats' temporomandibular joint (TMJ).. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to evaluate the morphology and suspension of the PLGA nanocapsules. Rats were pretreated (15 min) with an intra-TMJ injection of unloaded 15d-PGJ(2) or 15d-PGJ(2)-NC at concentrations of 10, 100 or 1000 pg followed by an ipsilateral intra-TMJ injection of 1.5% formalin. The nociceptive behavioral response was observed during 45 min; animals were then sacrificed and the periarticular tissue was removed for IL-1β measurements.. TEM and AFM analyses showed that 15d-PGJ(2)-NC is spherical without any aggregates or adhesion confirming that this formulation is a good drug carrier system for 15d-PGJ(2). Pretreatment with 15d-PGJ(2)-NC (100 and 1000 pg/TMJ), but not unloaded 15d-PGJ(2), was found to significantly decrease the release of IL-1β cytokine and the animals' nociceptive behavioral response induced by intra-TMJ injection of formalin.. The compound 15d-PGJ(2)-NC might be used as a potential antinociceptive and anti-inflammatory agent to treat temporomandibular disorders in clinical practice. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Behavior, Animal; Dose-Response Relationship, Drug; Drug Carriers; Formaldehyde; Inflammation; Injections; Interleukin-1beta; Lactic Acid; Male; Microscopy, Atomic Force; Microscopy, Electron, Transmission; Nanocapsules; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Prostaglandin D2; Rats; Rats, Wistar; Temporomandibular Joint Disorders | 2012 |
Effects of 15d-PGJ₂-loaded poly(D,L-lactide-co-glycolide) nanocapsules on inflammation.
The PPAR-γ agonist 15d-PGJ₂ is a potent anti-inflammatory agent but only at high doses. To improve the efficiency of 15d-PGJ₂, we used poly(D,L-lactide-co-glycolide) nanocapsules to encapsulate it, and function as a drug carrier system. The effects of these loaded nanocapsules (15d-PGJ₂-NC) on inflammation induced by different stimuli were compared with those of free 15d-PGJ₂.. Mice were pretreated (s.c.) with either 15d-PGJ₂-NC or unloaded 15d-PGJ₂ (3, 10 or 30 µg·kg⁻¹), before induction of an inflammatory response by i.p. injection of either endotoxin (LPS), carrageenan (Cg) or mBSA (immune response).. The 15d-PGJ₂-NC complex did not display changes in physico-chemical parameters or drug association efficiency over time, and was stable for up to 60 days of storage. Neutrophil migration induced by i.p. administration of LPS, Cg or mBSA was inhibited by 15d-PGJ₂-NC, but not by unloaded 15d-PGJ₂. In the Cg model, 15d-PGJ₂-NC markedly inhibited serum levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-12p70. Importantly, 15d-PGJ₂-NC released high amounts of 15d-PGJ₂, reaching a peak between 2 and 8 h after administration. 15d-PGJ ₂ was detected in mouse serum after 24 h, indicating sustained release from the carrier. When the same concentration of unloaded 15d-PGJ₂ was administered, only small amounts of 15d-PGJ₂ were found in the serum after a few hours.. The present findings clearly indicate the potential of the novel anti-inflammatory 15d-PGJ₂ carrier formulation, administered systemically. The formulation enables the use of a much smaller drug dose, and is significantly more effective compared with unloaded 15d-PGJ₂. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Biocompatible Materials; Carrageenan; Cytokines; Drug Carriers; Hemoglobins; Immunization; Inflammation; Lactic Acid; Lipopolysaccharides; Male; Mice; Mice, Inbred BALB C; Nanocapsules; Neutrophil Infiltration; Neutrophils; Particle Size; Peritonitis; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Prostaglandin D2; Serum Albumin, Bovine | 2011 |
Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ.
Endocannabinoids have both anti-inflammatory and neuroprotective properties against harmful stimuli. We previously demonstrated that the endocannabinoid 2-arachidonoylglycerol (2-AG) protects hippocampal neurons by limiting the inflammatory response via a CB(1) receptor-dependent MAPK/NF-κB signalling pathway. The purpose of the present study was to determine whether PPARγ, an important nuclear receptor, mediates 2-AG-induced inhibition of NF-κB phosphorylation and COX-2 expression, and COX-2-enhanced miniature spontaneous excitatory postsynaptic currents (mEPSCs).. By using a whole-cell patch clamp electrophysiological recording technique and immunoblot analysis, we determined mEPSCs, expression of COX-2 and PPARγ, and phosphorylation of NF-kB in mouse hippocampal neurons in culture.. Exogenous and endogenous 2-AG-produced suppressions of NF-κB-p65 phosphorylation, COX-2 expression and excitatory synaptic transmission in response to pro-inflammatory interleukin-1β (IL-1β) and LPS were inhibited by GW9662, a selective PPARγ antagonist, in hippocampal neurons in culture. PPARγ agonists 15-deoxy-Δ(12,14) -prostaglandin J(2) (15d-PGJ(2)) and rosiglitazone mimicked the effects of 2-AG on NF-κB-p65 phosphorylation, COX-2 expression and mEPSCs, and these effects were eliminated by antagonism of PPARγ. Moreover, exogenous application of 2-AG or elevation of endogenous 2-AG by inhibiting its hydrolysis with URB602 or JZL184, selective inhibitors of monoacylglycerol lipase (MAGL), prevented the IL-1β- and LPS-induced reduction of PPARγ expression. The 2-AG restoration of the reduced PPARγ expression was blocked or attenuated by pharmacological or genetic inhibition of the CB(1) receptor.. Our results suggest that CB(1) receptor-dependent PPARγ expression is an important and novel signalling pathway in endocannabinoid 2-AG-produced resolution of neuroinflammation in response to pro-inflammatory insults. Topics: Anilides; Animals; Arachidonic Acids; Benzodioxoles; Biphenyl Compounds; Cannabinoid Receptor Modulators; Cells, Cultured; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Endocannabinoids; Excitatory Postsynaptic Potentials; Glycerides; Hippocampus; Inflammation; Interleukin-1beta; Lipopolysaccharides; Mice; Monoacylglycerol Lipases; Neurons; NF-kappa B; Phosphorylation; Piperidines; PPAR gamma; Prostaglandin D2; Receptor, Cannabinoid, CB1; Rosiglitazone; Signal Transduction; Synaptic Transmission; Thiazolidinediones | 2011 |
Activation of peroxisome proliferator-activated receptor gamma in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema.
Systemic administration of thiazolidinediones reduces peripheral inflammation in vivo, presumably by acting at peroxisome proliferator-activated receptor gamma (PPARgamma) in peripheral tissues. Based on a rapidly growing body of literature indicating the CNS as a functional target of PPARgamma actions, we postulated that brain PPARgamma modulates peripheral edema and the processing of inflammatory pain signals in the dorsal horn of the spinal cord. To test this in the plantar carrageenan model of inflammatory pain, we measured paw edema, heat hyperalgesia, and dorsal horn expression of the immediate-early gene c-fos after intracerebroventricular (ICV) administration of PPARgamma ligands or vehicle. We found that ICV rosiglitazone (0.5-50 microg) or 15d-PGJ(2) (50-200 microg), but not vehicle, dose-dependently reduced paw thickness, paw volume and behavioral withdrawal responses to noxious heat. These anti-inflammatory and anti-hyperalgesia effects result from direct actions in the brain and not diffusion to other sites, because intraperitoneal and intrathecal administration of rosiglitazone (50 microg) and 15d-PGJ(2) (200 microg) had no effect. PPARgamma agonists changed neither overt behavior nor motor coordination, indicating that non-specific behavioral effects do not contribute to PPAR ligand-induced anti-hyperalgesia. ICV administration of structurally dissimilar PPARgamma antagonists (either GW9662 or BADGE) reversed the anti-inflammatory and anti-hyperalgesic actions of both rosiglitazone and 15d-PGJ(2). To evaluate the effects of PPARgamma agonists on a classic marker of noxious stimulus-evoked gene expression, we quantified Fos protein expression in the dorsal horn. The number of carrageenan-induced Fos-like immunoreactive profiles was less in rosiglitazone-treated rats as compared to vehicle controls. We conclude that pharmacological activation of PPARgamma in the brain rapidly inhibits local edema and the spinal transmission of noxious inflammatory signals. Topics: Anilides; Animals; Benzhydryl Compounds; Brain; Central Nervous System Agents; Disease Models, Animal; Edema; Epoxy Compounds; Gene Expression; Inflammation; Male; Pain; PPAR gamma; Prostaglandin D2; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Rosiglitazone; Spinal Cord; Thiazolidinediones | 2010 |
Activation of peripheral kappa/delta opioid receptors mediates 15-deoxy-(Delta12,14)-prostaglandin J2 induced-antinociception in rat temporomandibular joint.
This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(+)(ATP)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(+)(ATP) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan's Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular l-arginine/NO/cGMP/K(+)(ATP) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. Topics: Analgesics; Animals; Cyclic GMP; Dose-Response Relationship, Drug; Formaldehyde; Inflammation; KATP Channels; Male; Nitric Oxide Synthase; Pain; PPAR gamma; Prostaglandin D2; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Serotonin; Signal Transduction; Temporomandibular Joint | 2009 |
15d-prostaglandin J2 inhibits inflammatory hypernociception: involvement of peripheral opioid receptor.
The 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous ligand of peroxisome proliferator-activated receptors gamma (PPAR-gamma) and is now recognized as a potent anti-inflammatory mediator. However, information regarding the influence of 15d-PGJ(2) on inflammatory pain is still unknown. In this study, we evaluated the effect of 15d-PGJ(2) upon inflammatory hypernociception and the mechanisms involved in this effect. We observed that intraplantar administration of 15d-PGJ(2) (30-300 ng/paw) inhibits the mechanical hypernociception induced by both carrageenan (100 mug/paw) and the directly acting hypernociceptive mediator, prostaglandin E(2) (PGE(2)). Moreover, 15d-PGJ(2) [100 ng/temporomandibular joint (TMJ)] inhibits formalin-induced TMJ hypernociception. On the other hand, the direct administration of 15d-PGJ(2) into the dorsal root ganglion was ineffective in blocking PGE(2)-induced hypernociception. In addition, the 15d-PGJ(2) antinociceptive effect was enhanced by the increase of macrophage population in paw tissue due to local injection of thioglycollate, suggesting the involvement of these cells on the 15d-PGJ(2)-antinociceptive effect. Moreover, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone and by the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662), suggesting the involvement of peripheral opioids and PPAR-gamma receptor in the process. Similar to opioids, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide/cGMP/protein kinase G (PKG)/K(ATP)(+) channel pathway because it was prevented by the pretreatment with the inhibitors of nitric-oxide synthase (N(G)-monomethyl-l-arginine acetate), guanylate cyclase]1H-(1,2,4)-oxadiazolo(4,2-alpha)quinoxalin-1-one[, PKG [indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycone (KT5823)], or with the ATP-sensitive potassium channel blocker glibenclamide. Taken together, these results demonstrate for the first time that 15d-PGJ(2) inhibits inflammatory hypernociception via PPAR-gamma activation. This effect seems to be dependent on endogenous opioids and local macrophages. Topics: Analgesics; Animals; Carrageenan; Cytokines; Formaldehyde; Hyperalgesia; Inflammation; Macrophages; Male; Naloxone; Narcotic Antagonists; Pain; PPAR gamma; Prostaglandin D2; Rats; Rats, Wistar; Receptors, Opioid; Skin; Tumor Necrosis Factor-alpha | 2008 |
Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages.
Both statins and peroxisome proliferator-activated receptor (PPAR)gamma ligands have been reported to protect against the progression of atherosclerosis. In the present study, we investigated the effects of statins on PPARgamma activation in macrophages. Statins increased PPARgamma activity, which was inhibited by mevalonate, farnesylpyrophosphate, or geranylgeranylpyrophosphate. Furthermore, a farnesyl transferase inhibitor and a geranylgeranyl transferase inhibitor mimicked the effects of statins. Statins inhibited the membrane translocations of Ras, RhoA, Rac, and Cdc42, and overexpression of dominant-negative mutants of RhoA (DN-RhoA) and Cdc42 (DN-Cdc42), but not of Ras or Rac, increased PPARgamma activity. Statins induced extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. However, DN-RhoA and DN-Cdc42 activated p38 MAPK, but not ERK1/2. ERK1/2- or p38 MAPK-specific inhibitors abrogated statin-induced PPARgamma activation. Statins induced cyclooxygenase (COX)-2 expression and increased intracellular 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) levels through ERK1/2- and p38 MAPK-dependent pathways, and inhibitors or small interfering RNA of COX-2 inhibited statin-induced PPARgamma activation. Statins also activate PPARalpha via COX-2-dependent increases in 15d-PGJ(2) levels. We further demonstrated that statins inhibited lipopolysaccharide-induced tumor necrosis factor alpha or monocyte chemoattractant protein-1 mRNA expression, and these effects by statins were abrogated by the PPARgamma antagonist T0070907 or by small interfering RNA of PPARgamma or PPARalpha. Statins also induced ATP-binding cassette protein A1 or CD36 mRNA expression, and these effects were suppressed by small interfering RNAs of PPARgamma or PPARalpha. In conclusion, statins induce COX-2-dependent increase in 15d-PGJ(2) level through a RhoA- and Cdc42-dependent p38 MAPK pathway and a RhoA- and Cdc42-independent ERK1/2 pathway, thereby activating PPARgamma. Statins also activate PPARalpha via COX-2-dependent pathway. These effects of statins may explain their antiatherogenic actions. Topics: Animals; ATP Binding Cassette Transporter 1; ATP-Binding Cassette Transporters; CD36 Antigens; cdc42 GTP-Binding Protein; Cells, Cultured; Cyclooxygenase 2; Extracellular Signal-Regulated MAP Kinases; Fatty Acids; Gene Expression Regulation, Enzymologic; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Inflammation; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred C3H; p38 Mitogen-Activated Protein Kinases; PPAR alpha; PPAR gamma; Prostaglandin D2; Signal Transduction | 2007 |
Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A.
The signaling lipid molecule 15-deoxy-delta 12,14-prostaglandin J2 (15d-PGJ2) has multiple cellular functions, including anti-inflammatory and antineoplastic activities. Here, we report that 15d-PGJ2 blocks translation through inactivation of translational initiation factor eIF4A. Binding of 15d-PGJ2 to eIF4A blocks the interaction between eIF4A and eIF4G that is essential for translation of many mRNAs. Cysteine 264 in eIF4A is the target site of 15d-PGJ2. The antineoplastic activity of 15d-PGJ2 is likely attributed to inhibition of translation. Moreover, inhibition of translation by 15d-PGJ2 results in stress granule (SG) formation, into which TRAF2 is sequestered. The sequestration of TRAF2 contributes to the anti-inflammatory activity of 15d-PGJ2. These findings reveal a novel cross-talk between translation and inflammatory response, and offer new approaches to develop anticancer and anti-inflammatory drugs that target translation factors including eIF4A. Topics: Anti-Inflammatory Agents; Arachidonic Acid; Arsenites; Chromans; Cyclopentanes; Cytoplasmic Granules; Dinoprostone; Emetine; Enzyme Inhibitors; Eukaryotic Initiation Factor-2; Eukaryotic Initiation Factor-4A; Gene Expression Regulation; HeLa Cells; Humans; Hypoglycemic Agents; Inflammation; Poly(A)-Binding Proteins; PPAR gamma; Prostaglandin D2; Prostaglandins A; Protein Biosynthesis; Protein Synthesis Inhibitors; Rosiglitazone; Signal Transduction; Sodium Compounds; T-Cell Intracellular Antigen-1; Thiazolidinediones; TNF Receptor-Associated Factor 2; Troglitazone; Tumor Necrosis Factor-alpha | 2007 |
Resolving the problem of persistence in the switch from acute to chronic inflammation.
Topics: Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Proliferation; Chronic Disease; Disease Models, Animal; Gene Expression Regulation; Humans; Inflammation; Lipid Metabolism; Lipids; Lymphocytes; Mice; Models, Biological; Peritonitis; Prostaglandin D2; Time Factors | 2007 |
15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a transcription factor that regulates the expression of various gene products that are essential in lipid and glucose metabolism, as well as that of the peroxisome-enriched antioxidant enzyme, catalase. Activation of PPARgamma is linked to anti-inflammatory activities and is beneficial for cardiovascular diseases. However, little is known about its role in intracerebral hemorrhage (ICH). 15-Deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) acts as a physiologic agonist for PPARgamma. In this study, we found that injection of 15d-PGJ2 into the locus of striatal hematoma increased PPARgamma-deoxyribonucleic acid (DNA) binding activity and the expression of catalase messenger ribonucleic acid (mRNA) and protein in the perihemorrhagic area. Additionally, 15d-PGJ2 significantly reduced nuclear factor-kappaB (NF-kappaB) activation and prevented neutrophil infiltration measured by myeloperoxidase (MPO) immunoassay, and also reduced cell apoptosis measured by terminal deoxynucleotide transferase dUTP nick-end labeling (TUNEL). In addition, 15d-PGJ2 reduced behavioral dysfunction produced by the ICH. Altogether, our findings indicate that injection of 15d-PGJ2 at the onset of ICH is associated with activation of PPARgamma and elevation of catalase expression, suppression of NF-kappaB activity, and restricted neutrophil infiltration. All these events predicted reduced behavioral deficit and neuronal damage. Topics: Animals; Apoptosis; Behavior, Animal; Blotting, Western; Catalase; Cerebral Hemorrhage; Electrophoretic Mobility Shift Assay; Gene Expression; Image Processing, Computer-Assisted; Immunohistochemistry; In Situ Nick-End Labeling; Inflammation; Injections, Intraventricular; Male; Neurons; Neutrophil Infiltration; NF-kappa B; PPAR gamma; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Recovery of Function; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2006 |
Synergistic effect of peroxisome proliferator activated receptor-gamma and liver X receptor-alpha in the regulation of inflammation in macrophages.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) and liver X receptor-alpha (LXRalpha) are nuclear ligand-activated transcription factors, which regulate lipid metabolism and inflammation. Murine J774.2 macrophages were stimulated with Escherichia coli lipopolysaccharide (concentration, 10 microg/mL) with or without the PPARgamma ligand, 15-deoxy-Delta prostaglandin J2 (15d-PGJ2), or the LXRalpha ligands, 22(R)-hydroxycholesterol and T0901317 (concentration range, 0.01-10 micromol/L), alone or in combination. Nitric oxide (NO) metabolites and tumor necrosis factor alpha production, inducible NO synthase expression, and mitochondrial respiration were measured. When added to the cells as single agents, 15d-PGJ2, 22(R)-hydroxycholesterol, or T0901317 reduced the lipopolysaccharide-induced NO and tumor necrosis factor alpha production and the inducible NO synthase expression, and partially maintained mitochondrial respiration in a concentration-dependent manner. When added to the cells in combination at suboptimal concentrations, 15d-PGJ2 with 22(R)-hydroxycholesterol, or 15d-PGJ2 with T0901317, exerted anti-inflammatory effects similar to much higher concentrations (10,000-fold to 100,000-fold) of each ligand alone. The anti-inflammatory effects of these ligands, alone or in combination, were associated with reduction of nuclear factor-kappaB activation and with enhancement of PPARgamma DNA binding. LXRalpha expression was upregulated in response to 15d-PGJ2 and to the LXRalpha ligands when added alone or in combination. Immunoprecipitation experiments revealed that PPARgamma interacted with LXRalpha. Our data demonstrate that the PPARgamma ligand, 15d-PGJ2, and the LXRalpha ligands, 22(R)-hydroxycholesterol and T0901317, although binding to different nuclear receptors (i.e., PPARgamma and LXRalpha, respectively), affect mediator production through common cell signaling events and exert a synergistic potentiation in a combined treatment at suboptimal concentrations. Thus, our data suggest that PPARgamma and LXRalpha may interact in controlling the inflammatory response in macrophages. Topics: Animals; Anti-Inflammatory Agents; Cells, Cultured; DNA-Binding Proteins; Drug Synergism; Hydrocarbons, Fluorinated; Hydroxycholesterols; Inflammation; Ligands; Lipopolysaccharides; Liver X Receptors; Macrophages; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Orphan Nuclear Receptors; PPAR gamma; Prostaglandin D2; Receptors, Cytoplasmic and Nuclear; Signal Transduction; Sulfonamides; Tumor Necrosis Factor-alpha | 2006 |
Increased plasma levels of 15-deoxyDelta prostaglandin J2 are associated with good outcome in acute atherothrombotic ischemic stroke.
The 15-deoxyDelta prostaglandin J2 (15-dPGJ2) is an anti-inflammatory prostaglandin that has been proposed to be the endogenous ligand of peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that can exert potent anti-inflammatory actions by repressing inflammatory genes when activated. It has been suggested that 15-dPGJ2 could be beneficial in neurological disorders in which inflammation contributes to cell death such as stroke.. We investigated the relationship between plasma levels of 15-dPGJ2 and early neurological deterioration (END), infarct volume, and neurologic outcome in 552 patients with an acute stroke admitted within 24 hours after symptoms onset.. Median [quartiles] plasma 15-dPGJ2 levels on admission were significantly higher in patients than in controls (60.5 [11.2 to 109.4] versus 5.0 [3.8 to 7.2] pg/mL; P<0.0001). Levels of this prostaglandin were also significantly higher in patients with vascular risk factors (history of hypertension or diabetes) and with atherothrombotic infarcts (113.9 [81.6 to 139.7] pg/mL), than in those with lacunar (58.7 [32.7 to 86.2] pg/mL), cardioembolic (12.1 [6.5 to 39.2] pg/mL), or undetermined origin infarcts (11.4 [5.6 to 24.3] pg/mL) (P<0.0001). In the subgroup of patients with atherothrombotic infarcts, the adjusted odds ratio of END and poor outcome for 1 pg/mL increase in 15-dPGJ2 were 0.95 (95% CI, 0.94 to 0.97) and 0.97 (95% CI, 0.96 to 0.98), respectively. In a generalized linear model, by 1 U increase in 15-dPGJ2, there was a reduction of 0.47 mL (95% CI, 0.32 to 0.63) in the mean estimated infarct volume.. Increased plasma 15-dPGJ2 concentration is associated with good early and late neurological outcome and smaller infarct volume. These findings suggest a neuroprotective effect of 15-dPGJ2 in atherothrombotic ischemic stroke. Topics: Acute Disease; Aged; Anti-Inflammatory Agents; Brain Ischemia; Case-Control Studies; Female; Humans; Inflammation; Ligands; Male; Middle Aged; Nervous System Diseases; Odds Ratio; PPAR gamma; Prostaglandin D2; Regression Analysis; Stroke; Thrombosis; Time Factors; Treatment Outcome | 2005 |
Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear-receptor superfamily that binds to DNA with retinoid X receptors (RXRs) as PPAR-RXR heterodimers. In experimental autoimmune encephalomyelitis (EAE), the gene expression of PPAR-gamma was demonstrated in spinal cord during the course of EAE. Administration of 15-deoxy-(12,14)-prostaglandin J2 (15d-PGJ2) or 9-cis-retinoic acid (RA) alone at the onset of clinical signs of EAE reduced the severity of disease, however, their combination resulted in enhanced amelioration of disease. These results suggest that use of RXR specific ligands may be highly effective when combined with PPAR-gamma agonists in the treatment of autoimmune demyelinating diseases such as multiple sclerosis (MS). Topics: Alitretinoin; Analysis of Variance; Animals; Cells, Cultured; Cytokines; Dose-Response Relationship, Drug; Drug Combinations; Drug Interactions; Encephalomyelitis, Autoimmune, Experimental; Enzyme-Linked Immunosorbent Assay; Immunization; Immunohistochemistry; Inflammation; Ligands; Lymph Nodes; Mice; Mice, Transgenic; Microglia; Myelin Basic Protein; Nitric Oxide; Peptide Fragments; Prostaglandin D2; Receptors, Antigen, T-Cell, alpha-beta; Receptors, Cytoplasmic and Nuclear; Receptors, Retinoic Acid; Retinoid X Receptors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Spleen; Time Factors; Transcription Factors; Tretinoin | 2004 |
Balance between PGD synthase and PGE synthase is a major determinant of atherosclerotic plaque instability in humans.
Inducible cyclooxygenase (COX-2) catalyzes the first step in prostanoid biosynthesis and is considered a proinflammatory enzyme. COX-2 and type 1 inducible PGE synthase (mPGES-1) have a role in metalloproteinase (MMP) release leading to plaque rupture. In contrast, lipocalin-type PGD synthase (L-PGDS) has been shown to exert antiinflammatory actions. Thus, in this study we investigated whether a shift from a PGDS-oriented to a PGES-oriented profile in arachidonate metabolism leads to inflammatory activation in rupture-prone plaque macrophages.. Atherosclerotic plaques were obtained from 60 patients who underwent carotid endarterectomy, symptomatic (n=30) and asymptomatic (n=30) according to evidence of recent transient ischemic attack or stroke. Plaques were analyzed for COX-2, mPGES-1, L-PGDS, PPARgamma, IkappaBalpha, NF-kappaB, and MMP-9 by immunocytochemistry, Western blot, reverse-transcriptase polymerase chain reaction, enzyme immunoassay, and zymography. Prostaglandin E2 (PGE2) pathway was significantly prevalent in symptomatic plaques, whereas PGD2 pathway was overexpressed in asymptomatic ones, associated with NF-kappaB inactivation and MMP-9 suppression. In vitro COX-2 inhibition in monocytes was associated with reduced MMP-9 release only when PGD2 pathway overcame PGE2 pathway.. These results suggest that COX-2 may have proinflammatory and antiinflammatory properties as a function of expression of downstream PGH2 isomerases, and that the switch from L-PGDS to mPGES-1 in plaque macrophages is associated with cerebral ischemic syndromes, possibly through MMP-induced plaque rupture. Topics: Arachidonic Acid; Carotid Artery Diseases; Cyclooxygenase 1; Cyclooxygenase 2; Dinoprostone; Humans; I-kappa B Proteins; Inflammation; Intramolecular Oxidoreductases; Ischemic Attack, Transient; Isoenzymes; Lipocalins; Macrophages; Matrix Metalloproteinase 9; Membrane Proteins; NF-kappa B; NF-KappaB Inhibitor alpha; PPAR gamma; Prostaglandin D2; Prostaglandin-E Synthases; Prostaglandin-Endoperoxide Synthases; Stroke | 2004 |
Differential effects of serum constituents on apoptosis induced by the cyclopentenone prostaglandin 15-deoxy-delta12,14-prostaglandin J2 in WISH epithelial cells.
Cyclopentenone prostaglandins, delta12-PGJ2 and 15d-PGJ2, have potent anti-tumour and anti-inflammatory activities, and have been shown to induce apoptosis in amnion-derived WISH cells. In this study, we have investigated the protective effects of serum and its constituents (growth factors and albumin) on delta12-PGJ2 and 15d-PGJ2-induced apoptosis in WISH cells. Serum (0.5% w/v) was protective against both delta12-PGJ2 and 15d-PGJ2-induced apoptosis. This was not due to the presence of serum-derived growth factors (EGF, IGF-1 and IGF-2), since they had no significant effect on 15d-PGJ2-induced cell death. In contrast, IGF-1 partially inhibited etoposide-induced apoptosis, confirming the presence of a functional IGF-1 receptor signalling system. Albumin was identified as the key survival factor in serum, since albumin and delipidated albumin exhibited the same level of protection from 15d-PGJ2-induced apoptosis as serum itself. The potential for serum albumin to regulate the bioactivity of cyclopentenone PGs may be of considerable importance in pathological conditions where roles for cyclopentenone PGs have been identified. Topics: Apoptosis; Cell Line; Epithelial Cells; Humans; Inflammation; Intercellular Signaling Peptides and Proteins; Neoplasms; Prostaglandin D2; Receptor, IGF Type 1; Serum; Serum Albumin; Signal Transduction | 2004 |