15-deoxyprostaglandin-j2 has been researched along with Hypoxia* in 4 studies
4 other study(ies) available for 15-deoxyprostaglandin-j2 and Hypoxia
Article | Year |
---|---|
15d-prostaglandin J2 protects cortical neurons against oxygen-glucose deprivation/reoxygenation injury: involvement of inhibiting autophagy through upregulation of Bcl-2.
We have previously shown that PPAR-γ agonist 15d-PGJ2 inhibited neuronal autophagy after cerebral ischemia/reperfusion injury. However, the underlying mechanism of its regulatory role in neuronal autophagy remains unclear. This study was designed to test the hypothesis that 15d-PGJ2 upregulated Bcl-2 which binds to Beclin 1, and thereby inhibits autophagy. We performed cell viability assay, cytotoxicity assay, western blot, and co-immunoprecipitation to analyze autophagy activities in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R). OGD/R induced autophagy in cultured cortical neurons. 15d-PGJ2 treatment significantly decreased LC3-II/LC3-I ratio and Beclin 1 expression, but increased p62 expression. Autophagic inhibitor 3-methyladenine decreased LC3-II levels, increased neuronal cell viability, and mimicked some protective effect of 15d-PGJ2 against OGD/R injury. OGD/R-induced autophagy coincided with decreases in Bcl-2 expression and increases in Beclin 1 expression. 15d-PGJ2 treatment upregulated Bcl-2 expression and decreased Beclin 1 expression, and inhibit the dissociation of Beclin1 from Bcl-2 significantly. Bcl-2 siRNA abrogated the effect of 15d-PGJ2 on Beclin 1, LC3-II and p62, and influence cell viability and LDH level, while scRNA did not. PPAR-γ agonist 15d-PGJ2 exerts neuroprotection partially via inhibiting neuronal autophagy after OGD/R injury. The inhibition of autophagy by 15d-PGJ2 is mediated through upregulation of Bcl-2. Topics: Animals; Autophagy; Cell Survival; Cells, Cultured; Female; Glucose; Hypoxia; Mice; Mice, Inbred C57BL; Neurons; Neuroprotective Agents; Pregnancy; Prostaglandin D2; Proto-Oncogene Proteins c-bcl-2; Up-Regulation | 2015 |
Prostaglandin D2 toxicity in primary neurons is mediated through its bioactive cyclopentenone metabolites.
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in brain but its effect on neuronal cell death is complex and not completely understood. PGD2 may modulate neuronal cell death via activation of DP receptors or its metabolism to the cyclopentenone prostaglandins (CyPGs) PGJ2, Δ(12)-PGJ2 and 15-deoxy-Δ(12,14)-PGJ2, inducing cell death independently of prostaglandin receptors. This study aims to elucidate the effect of PGD2 on neuronal cell death and its underlying mechanisms. PGD2 dose-dependently induced cell death in rat primary neuron-enriched cultures in concentrations of ≥10μM, and this effect was not reversed by treatment with either DP1 or DP2 receptor antagonists. Antioxidants N-acetylcysteine (NAC) and glutathione which contain sulfhydryl groups that can bind to CyPGs, but not ascorbate or tocopherol, attenuated PGD2-induced cell death. Conversion of PGD2 to CyPGs was detected in neuronal culture medium; treatment with these CyPG metabolites alone exhibited effects similar to those of PGD2, including apoptotic neuronal cell death and accumulation of ubiquitinated proteins. Disruption of lipocalin-type prostaglandin D synthase (L-PGDS) protected neurons against hypoxia. These results support the hypothesis that PGD2 elicits its cytotoxic effects through its bioactive CyPG metabolites rather than DP receptor activation in primary neuronal culture. Topics: Animals; Apoptosis; Carbazoles; Cells, Cultured; Cerebral Cortex; Cyclopentanes; Dose-Response Relationship, Drug; Embryo, Mammalian; Hypoxia; Intramolecular Oxidoreductases; Lipocalins; Mice; Mice, Knockout; Neurons; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Receptors, Prostaglandin; Sulfonamides | 2013 |
Redox regulation of soluble epoxide hydrolase by 15-deoxy-delta-prostaglandin J2 controls coronary hypoxic vasodilation.
15-Deoxy-Δ-prostaglandin (15d-PG)J(2) is an electrophilic oxidant that dilates the coronary vasculature. This lipid can adduct to redox active protein thiols to induce oxidative posttranslational modifications that modulate protein and tissue function.. To investigate the role of oxidative protein modifications in 15d-PGJ(2)-mediated coronary vasodilation and define the distal signaling pathways leading to enhanced perfusion.. Proteomic screening with biotinylated 15d-PGJ(2) identified novel vascular targets to which it adducts, most notably soluble epoxide hydrolase (sEH). 15d-PGJ(2) inhibited sEH by specifically adducting to a highly conserved thiol (Cys521) adjacent to the catalytic center of the hydrolase. Indeed a Cys521Ser sEH "redox-dead" mutant was resistant to 15d-PGJ(2)-induced hydrolase inhibition. 15d-PGJ(2) dilated coronary vessels and a role for hydrolase inhibition was supported by 2 structurally different sEH antagonists each independently inducing vasorelaxation. Furthermore, 15d-PGJ(2) and sEH antagonists also increased coronary effluent epoxyeicosatrienoic acids consistent with their vasodilatory actions. Indeed 14,15-EET alone induced relaxation and 15d-PGJ(2)-mediated vasodilation was blocked by the EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE). Additionally, the coronary vasculature of sEH-null mice was basally dilated compared to wild-type controls and failed to vasodilate in response to 15d-PGJ(2). Coronary vasodilation to hypoxia in wild-types was accompanied by 15d-PGJ(2) adduction to and inhibition of sEH. Consistent with the importance of hydrolase inhibition, sEH-null mice failed to vasodilate during hypoxia.. This represents a new paradigm for the regulation of sEH by an endogenous lipid, which is integral to the fundamental physiological response of coronary hypoxic vasodilation. Topics: Amino Acid Sequence; Animals; Epoxide Hydrolases; Hypoxia; Mice; Mice, Inbred C57BL; Mice, Knockout; Models, Animal; Molecular Sequence Data; Myocardium; Oxidation-Reduction; Prostaglandin D2; Rats; Rats, Wistar; Signal Transduction; Vasodilation | 2011 |
Hypoxia reduces the expression and anti-inflammatory effects of peroxisome proliferator-activated receptor-gamma in human proximal renal tubular cells.
Peroxisome proliferator-activated receptor (PPAR)-gamma may counteract tissue fibrosis via its anti-inflammatory actions, while hypoxia, a new pro-fibrotic factor, reportedly modifies PPAR-gamma expression. However, the effects of hypoxia on the expression and anti-inflammatory actions of PPAR-gamma have yet remained to be clarified in renal tubular cells.. Confluent human proximal renal tubular epithelial cells (HPTECs) were exposed to hypoxia (1% O2) and/or TNF-alpha at 10 ng/ml for up to 48 h. The cells were incubated with PPAR-gamma agonists, 15d-PGJ2 or pioglitazone, for 30 min before stimulation. Precise amounts of PPAR-gamma and MCP-1 mRNA and protein were measured by TaqMan quantitative PCR and immunoblot or ELISA, respectively.. A cDNA array analysis identified PPAR-gamma as one of the hypoxia-affected genes in HPTECs. Hypoxia reduced mRNA levels of PPAR-gamma at 24 and 48 h and protein levels at 6 and 48 h. Knockout of hypoxia-inducible factor-1alpha (HIF-1alpha) with its dominant negative form did not block the hypoxia-induced reduction in PPAR-gamma expression. PPAR-gamma's activation with 15d-PGJ2 or pioglitazone reduced basal and TNF-alpha-stimulated MCP-1 expression at mRNA and protein levels at 24 h under normoxia. MCP-1 reduction rates at basal mRNA and protein levels were slightly but significantly lower during hypoxia than normoxia (9 vs 69% and 36 vs 42%, respectively, for 15d-PGJ2, and 0 vs 34% and 12 vs 21%, respectively, for pioglitazone). Finally, a specific inhibitor for PPAR-gamma, GW9662, weakened the MCP-1-decreasing effect of 15d-PGJ2 by about 30%, under basal conditions, while it abolished the effect of pioglitazone almost completely.. Hypoxia-induced loss of function of PPAR-gamma reduces anti-inflammatory effects of PPAR-gamma activation, possibly modulating inflammatory responses in the diseased kidney. Topics: Antioxidants; Cells, Cultured; Chemokine CCL2; Cyclic N-Oxides; Gene Expression Regulation; Humans; Hypoglycemic Agents; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Kidney Diseases; Kidney Tubules, Proximal; Oligonucleotide Array Sequence Analysis; Pioglitazone; PPAR gamma; Prostaglandin D2; RNA, Messenger; Spin Labels; Thiazolidinediones; Tumor Necrosis Factor-alpha | 2007 |