15-deoxyprostaglandin-j2 has been researched along with Carcinoma* in 2 studies
2 other study(ies) available for 15-deoxyprostaglandin-j2 and Carcinoma
Article | Year |
---|---|
PPARgamma-independent induction of growth arrest and apoptosis in prostate and bladder carcinoma.
Although PPARgamma antagonists have shown considerable pre-clinical efficacy, recent studies suggest PPARgamma ligands induce PPARgamma-independent effects. There is a need to better define such effects to permit rational utilization of these agents.. We have studied the effects of a range of endogenous and synthetic PPARgamma ligands on proliferation, growth arrest (FACS analysis) and apoptosis (caspase-3/7 activation and DNA fragmentation) in multiple prostate carcinoma cell lines (DU145, PC-3 and LNCaP) and in a series of cell lines modelling metastatic transitional cell carcinoma of the bladder (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2).. 15-deoxy-prostaglandin J2 (15dPGJ2), troglitazone (TGZ) and to a lesser extent ciglitazone exhibited inhibitory effects on cell number; the selective PPARgamma antagonist GW9662 did not reverse these effects. Rosiglitazone and pioglitazone had no effect on proliferation. In addition, TGZ induced G0/G1 growth arrest whilst 15dPGJ2 induced apoptosis.. Troglitazone and 15dPGJ2 inhibit growth of prostate and bladder carcinoma cell lines through different mechanisms and the effects of both agents are PPARgamma-independent. Topics: Antineoplastic Agents; Apoptosis; Carcinoma; Carcinoma, Transitional Cell; Caspase 3; Caspase 7; Caspases; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Chromans; DNA Fragmentation; Humans; Ligands; Male; PPAR gamma; Prostaglandin D2; Prostatic Neoplasms; RNA, Messenger; Thiazolidinediones; Troglitazone; Urinary Bladder Neoplasms | 2006 |
Effects of PPARgamma agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line.
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists cause cell death in several types of cancer cells. The aim of this study was to examine the effects of two PPARgamma agonists, ciglitazone and 15-deoxy-delta(12,14)-prostaglandin J2 (15dPGJ2), on the survival of thyroid carcinoma CGTH W-2 cells. Both ciglitazone and 15dPGJ2 decreased cell viability in a time- and dose-dependent manner. Cell death was mainly due to apoptosis, with a minor contribution from necrosis. Increased levels of active caspase 3, cleaved poly (ADP-ribose) polymerase (PARP), and cytosolic cytochrome-c were noted. In addition, ciglitazone and 15dPGJ2 induced detachment of CGTH W-2 cells from the culture substratum. Both the protein levels and immunostaining signals of focal adhesion (FA) proteins, including vinculin, integrin beta1, focal adhesion kinase (FAK), and paxillin were decreased after PPARgamma agonist treatment. Meanwhile, reduced phosphorylation of FAK and paxillin was noted. Furthermore, PPARgamma agonists induced expression of protein tyrosine phosphatase-PEST (PTP-PEST), and of phosphatase and tensin homologue deleted on chromosome ten (PTEN). The upregulation of these phosphatases might contribute to the dephosphorylation of FAK and paxillin, since pre-treatment with orthovanadate prevented PPARgamma agonist-induced dephosphorylation of FAK and paxillin. Perturbation of CGTH W-2 cells with anti-integrin beta1 antibodies induced FA disruption and apoptosis in the same cells, thus the downregulation of integrin beta1 by PPARgamma agonists resulted in FA disassembly and might induce apoptosis via anoikis. Our results suggested the presence of crosstalk between apoptosis and integrin-FA signaling. Moreover, upregulation and activation of PTEN was correlated with reduced phosphorylation of Akt, and this consequence disfavored cell survival. In conclusion, PPARgamma agonists induced apoptosis of thyroid carcinoma cells via the cytochrome-c caspase 3 and PTEN-Akt pathways, and induced necrosis via the PARP pathway. Topics: Apoptosis; Asian People; Carcinoma; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Focal Adhesions; Humans; Hypoglycemic Agents; Necrosis; Neoplasm Proteins; PPAR gamma; Prostaglandin D2; Signal Transduction; Thiazolidinediones; Thyroid Neoplasms | 2006 |