15-deoxyprostaglandin-j2 has been researched along with Acute-Disease* in 5 studies
5 other study(ies) available for 15-deoxyprostaglandin-j2 and Acute-Disease
Article | Year |
---|---|
15d-PGJ2 alleviates ConA-induced acute liver injury in mice by up-regulating HO-1 and reducing hepatic cell autophagy.
In this study, we confirmed a protective effect of 15d-PGJ2 in concanavalin A (ConA)-induced fulminant hepatitis in mice and investigated the potential mechanism.. Balb/C mice were injected with ConA (25mg/kg) to induce acute fulminant hepatitis, and 15d-PGJ2 (2.5-10μg) was administered 30min after the ConA injection. The histological grade, pro-inflammatory cytokine and ROS levels, apoptosis and autophagy activity, the expression of HO-1, Nrf2, JNK and Bcl-2 activity were determined 2, 4, and 8h after the ConA injection.. Following ConA challenge, the expression of cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) was up-regulated. Treatment with 15d-PGJ2 reduced the pathological effects of ConA-induced fulminant hepatitis and significantly reduced the levels of TNF-α, IL-1β and ROS after injection. 15d-PGJ2 inhibited apoptosis and autophagic cell death, facilitated Nrf2 nuclear translocation, increased HO-1 expression and suppressed the JNK activation.. 15d-PGJ2 alleviates ConA-induced acute liver injury in mice by up-regulating the anti-oxidative stress factor HO-1 and reducing the production of cytokines and ROS, thereby inhibiting hepatic cell autophagy probably induced by ROS. Topics: Acute Disease; Animals; Autophagy; Cell Nucleus; Concanavalin A; Disease Models, Animal; Enzyme Activation; Heme Oxygenase-1; Hepatitis; Hepatocytes; Interleukin-1beta; JNK Mitogen-Activated Protein Kinases; Liver; Male; Mice, Inbred BALB C; NF-E2-Related Factor 2; Phagosomes; Prostaglandin D2; Reactive Oxygen Species; Tumor Necrosis Factor-alpha; Up-Regulation | 2016 |
Resolving the problem of persistence in the switch from acute to chronic inflammation.
Topics: Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Proliferation; Chronic Disease; Disease Models, Animal; Gene Expression Regulation; Humans; Inflammation; Lipid Metabolism; Lipids; Lymphocytes; Mice; Models, Biological; Peritonitis; Prostaglandin D2; Time Factors | 2007 |
Cardioprotective effects of peroxisome proliferator activated receptor gamma activators on acute myocarditis: anti-inflammatory actions associated with nuclear factor kappaB blockade.
To test the hypothesis that activation of peroxisome proliferator activated receptor gamma (PPAR-gamma) reduces experimental autoimmune myocarditis (EAM) associated with inhibitor kappaB (IkappaB) alpha induction, blockade of nuclear factor kappaB (NF-kappaB), and inhibition of inflammatory cytokine expression.. EAM was induced in Lewis rats by immunisation with porcine cardiac myosin. PPAR-gamma activators 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) and pioglitazone (PIO) were administered to rats with EAM.. Enhanced PPAR-gamma expression was prominently stained in the nuclear and perinuclear regions of infiltrating inflammatory cells. Administration of 15d-PGJ2 and PIO greatly reduced the severity of myocarditis and suppressed myocardial mRNA and protein expression of inflammatory cytokines in rats with EAM. In addition, treatment with PPAR-gamma activators enhanced IkappaB concentrations in the cytoplasmic fractions and nuclear fractions from inflammatory myocardium. Concurrently, NF-kappaB was greatly activated in myocarditis; this activation was blocked in the 15d-PGJ2 treated and PIO treated groups.. PPAR-gamma may have a role in the pathophysiology of EAM. Because an increase in IkappaB expression and inhibition of translocation of the NF-kappaB subunit p65 to the nucleus in inflammatory cells correlated with the protective effects of PPAR-gamma activators, these results suggest that PPAR-gamma activators act sequentially through PPAR-gamma activation, IkappaB induction, blockade of NF-kappaB activation, and inhibition of inflammatory cytokine expression. These results suggest that PPAR-gamma activators such as 15d-PGJ2 and PIO may have the potential to modulate human inflammatory heart diseases such as myocarditis. Topics: Acute Disease; Animals; Autoimmune Diseases; Cardiotonic Agents; Cytokines; Gene Expression Regulation; Myocarditis; Myosins; NF-kappa B; Pioglitazone; PPAR gamma; Prostaglandin D2; Rats; Rats, Inbred Lew; RNA, Messenger; Thiazolidinediones | 2005 |
Increased plasma levels of 15-deoxyDelta prostaglandin J2 are associated with good outcome in acute atherothrombotic ischemic stroke.
The 15-deoxyDelta prostaglandin J2 (15-dPGJ2) is an anti-inflammatory prostaglandin that has been proposed to be the endogenous ligand of peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that can exert potent anti-inflammatory actions by repressing inflammatory genes when activated. It has been suggested that 15-dPGJ2 could be beneficial in neurological disorders in which inflammation contributes to cell death such as stroke.. We investigated the relationship between plasma levels of 15-dPGJ2 and early neurological deterioration (END), infarct volume, and neurologic outcome in 552 patients with an acute stroke admitted within 24 hours after symptoms onset.. Median [quartiles] plasma 15-dPGJ2 levels on admission were significantly higher in patients than in controls (60.5 [11.2 to 109.4] versus 5.0 [3.8 to 7.2] pg/mL; P<0.0001). Levels of this prostaglandin were also significantly higher in patients with vascular risk factors (history of hypertension or diabetes) and with atherothrombotic infarcts (113.9 [81.6 to 139.7] pg/mL), than in those with lacunar (58.7 [32.7 to 86.2] pg/mL), cardioembolic (12.1 [6.5 to 39.2] pg/mL), or undetermined origin infarcts (11.4 [5.6 to 24.3] pg/mL) (P<0.0001). In the subgroup of patients with atherothrombotic infarcts, the adjusted odds ratio of END and poor outcome for 1 pg/mL increase in 15-dPGJ2 were 0.95 (95% CI, 0.94 to 0.97) and 0.97 (95% CI, 0.96 to 0.98), respectively. In a generalized linear model, by 1 U increase in 15-dPGJ2, there was a reduction of 0.47 mL (95% CI, 0.32 to 0.63) in the mean estimated infarct volume.. Increased plasma 15-dPGJ2 concentration is associated with good early and late neurological outcome and smaller infarct volume. These findings suggest a neuroprotective effect of 15-dPGJ2 in atherothrombotic ischemic stroke. Topics: Acute Disease; Aged; Anti-Inflammatory Agents; Brain Ischemia; Case-Control Studies; Female; Humans; Inflammation; Ligands; Male; Middle Aged; Nervous System Diseases; Odds Ratio; PPAR gamma; Prostaglandin D2; Regression Analysis; Stroke; Thrombosis; Time Factors; Treatment Outcome | 2005 |
The PPARgamma ligand, 15d-PGJ2, attenuates the severity of cerulein-induced acute pancreatitis.
The prostaglandin D2 metabolite, 15d-PGJ2, a potent natural ligand for peroxisome proliferator-activated receptor gamma (PPARgamma), exerts antiinflammatory effects by inhibiting the induction of inflammatory response genes and NF-kappaB-dependent transcription. AIM To determine whether 15d-PGJ2 decreases the severity of secretagogue-induced acute pancreatitis (AP) and to assess cellular mechanisms contributing to these effects. METHODOLOGY Swiss Webster mice were injected with either saline or cerulein (50 microg/kg) hourly for 8 hours and received either 15d-PGJ2 (2 mg/kg) or vehicle 1 hour before and 4 hours after induction of AP. RESULTS Treatment with 15d-PGJ2 significantly attenuated AP, as determined by histologic assessment of edema, vacuolization, inflammation, and necrosis. This attenuation was associated with decreased cyclooxygenase-2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1) expression and decreased serum and pancreatic IL-6 levels. Treatment with 15d-PGJ2 markedly inhibited NF-kappaB DNA-binding activity, and, moreover, this decreased activity was associated with a concomitant inhibition of IkappaB protein degradation. CONCLUSION Our findings demonstrate that 15d-PGJ2 attenuates the severity of AP most likely through the inhibition of COX-2 expression, IL-6 production, and NF-kappaB activation. Ligands specific for PPARgamma may represent novel and effective means of clinical therapy for AP. Topics: Acute Disease; Animals; Blotting, Western; Cell Nucleus; Ceruletide; Cyclooxygenase 2; Electrophoretic Mobility Shift Assay; Female; Gene Expression Regulation; I-kappa B Proteins; Intercellular Adhesion Molecule-1; Interleukin-6; Isoenzymes; Ligands; Mice; NF-kappa B; Pancreatitis; Prostaglandin D2; Prostaglandin-Endoperoxide Synthases; Protein Transport; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Time Factors; Transcription Factors | 2003 |