15-deoxy-delta(12-14)-prostaglandin-j2 and Reperfusion-Injury

15-deoxy-delta(12-14)-prostaglandin-j2 has been researched along with Reperfusion-Injury* in 3 studies

Other Studies

3 other study(ies) available for 15-deoxy-delta(12-14)-prostaglandin-j2 and Reperfusion-Injury

ArticleYear
15-Deoxy-Δ
    Acta pharmacologica Sinica, 2017, Volume: 38, Issue:5

    Topics: Animals; Antioxidants; Apoptosis; Autophagy; Kupffer Cells; Liver; Liver Diseases; Male; Mice, Inbred BALB C; Prostaglandin D2; Protective Agents; Reactive Oxygen Species; Reperfusion Injury

2017
The cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2 ameliorates ischemic acute renal failure.
    Cardiovascular research, 2004, Feb-15, Volume: 61, Issue:3

    Here we investigate the effects of the endogenous prostaglandin D2 metabolite 15-deoxy-Delta(12,14)-prostaglandin J2, on the renal dysfunction and injury caused by ischemia/reperfusion of the kidney.. Male Wistar rats, subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h, were administered 15-deoxy-Delta(12,14)-prostaglandin J2 (1 mg/kg, intravenously) 5 min prior to and again after 3 or 12 h reperfusion.. 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduced (i) renal and tubular dysfunction (serum urea and creatinine levels, creatinine clearance, fractional excretion of Na+ (FENA)), (ii) tubular and reperfusion-injury (urinary N-acetyl-beta-D-glucosaminidase, aspartate aminotransferase (ASP) and gamma-glutamyltransferase (gamma-GT)) and (iii) histological evidence of renal injury. 15-deoxy-Delta(12,14)-prostaglandin J2 also improved renal function (plasma creatinine levels) and reduced the histological signs of renal injury (after 48 h reperfusion). Administration of 15-deoxy-Delta(12,14)-prostaglandin J2 markedly reduced the expression of inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 during reperfusion (determined using immunohistochemistry). Immunohistochemical analysis of p65 translocation and Western blot analysis of IkappaB-alpha degradation revealed that 15-deoxy-Delta(12,14)-prostaglandin J2 inhibited the activation of nuclear factor (NF)-kappaB in renal cells. Subsequently, 15d-PGJ2 was able to significantly reduce nitric oxide production during renal ischemia/reperfusion and by primary cultures of rat proximal tubular (PT) cells incubated with interferon-gamma and bacterial lipopolysaccharide (LPS) in combination.. We demonstrate here, for the first time, that 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduces renal ischemia/reperfusion-injury via reduction of pro-inflammatory gene expression during reperfusion subsequent to the inhibition of the activation of NF-kappaB.

    Topics: Animals; Calcium-Binding Proteins; Cells, Cultured; I-kappa B Proteins; Intercellular Adhesion Molecule-1; Interferon-gamma; Ischemia; Kidney; Kidney Diseases; Kidney Tubules; Lipopolysaccharides; Male; Membrane Glycoproteins; Models, Animal; Nerve Tissue Proteins; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Prostaglandin D2; Rats; Rats, Wistar; Reperfusion Injury; Synaptotagmin I; Synaptotagmins; Time Factors

2004
Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia/reperfusion injury of the gut.
    British journal of pharmacology, 2003, Volume: 140, Issue:2

    1. The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors related to retinoid, steroid and thyroid hormone receptors. The thiazolidinedione rosiglitazone and the endogenous cyclopentenone prostaglandin (PG)D2 metabolite, 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2), are two PPAR-gamma ligands, which modulate the transcription of target genes. 2. The aim of this study was to investigate the effect of rosiglitazone and 15d-PGJ2 on the tissue injury caused by ischaemia/reperfusion (I/R) of the gut. 3. I/R injury of the intestine was caused by clamping both the superior mesenteric artery and the coeliac trunk for 45 min, followed by release of the clamp allowing reperfusion for 2 or 4 h. This procedure results in splanchnic artery occlusion (SAO) shock. 4. Rats subjected to SAO developed a significant fall in mean arterial blood pressure, and only 10% of the animals survived for the entire 4 h reperfusion period. Surviving animals were killed for histological examination and biochemical studies. Rats subjected to SAO displayed a significant increase in tissue myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, significant increases in plasma tumour necrosis factor (TNF)-alpha and interleukin (IL)-1beta levels and marked injury to the distal ileum. 5. Increased immunoreactivity to nitrotyrosine was observed in the ileum of rats subjected to SAO. Staining of sections of the ileum obtained from SAO rats with anti-intercellular adhesion molecule (ICAM-1) antibody resulted in diffuse staining. 6. Administration at 30 min prior to the onset of gut ischaemia of the two PPAR-gamma agonists (rosiglitazone (0.3 mg kg-1 i.v.) and 15d-PGJ2 (0.3 mg kg-1 i.v.)) significantly reduced the (i) fall in mean arterial blood pressure, (ii) mortality rate, (iii) infiltration of the reperfused intestine with polymorphonuclear neutrophils (MPO activity), (iv) lipid peroxidation (MDA levels), (v) production of proinflammatory cytokines (TNF-alpha and IL-1beta) and (vi) histological evidence of gut injury. Administration of rosiglitazone and 15d-PGJ2 also markedly reduced the nitrotyrosine formation and the upregulation of ICAM-1 during reperfusion. 7. In order to elucidate whether the protective effects of rosiglitazone and 15d-PGJ2 are related to the activation of the PPAR-gamma receptor, we also investigated the effect of a PPAR-gamma antagonist, bisphenol A diglycidyl ether (BA

    Topics: Animals; Benzhydryl Compounds; Blood Pressure; Epoxy Compounds; Immunologic Factors; Intercellular Adhesion Molecule-1; Interleukin-1; Intestinal Mucosa; Intestines; Ligands; Male; Malondialdehyde; Peroxidase; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Reperfusion Injury; Rosiglitazone; Thiazolidinediones; Transcription Factors; Tumor Necrosis Factor-alpha; Tyrosine; Vasodilator Agents

2003