15-deoxy-delta(12-14)-prostaglandin-j2 and Pneumonia

15-deoxy-delta(12-14)-prostaglandin-j2 has been researched along with Pneumonia* in 3 studies

Other Studies

3 other study(ies) available for 15-deoxy-delta(12-14)-prostaglandin-j2 and Pneumonia

ArticleYear
The prostanoid 15-deoxy-Δ12,14-prostaglandin-j2 reduces lung inflammation and protects mice against lethal influenza infection.
    The Journal of infectious diseases, 2012, Feb-15, Volume: 205, Issue:4

    Growing evidence indicates that influenza pathogenicity relates to altered immune responses and hypercytokinemia. Therefore, dampening the excessive inflammatory response induced after infection might reduce influenza morbidity and mortality.. Considering this, we investigated the effect of the anti-inflammatory molecule 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) in a mouse model of lethal influenza infection.. Administration of 15d-PGJ(2) on day 1 after infection, but not on day 0, protected 79% of mice against lethal influenza infection. In addition, this treatment considerably reduced the morbidity associated with severe influenza infection. Our results also showed that treatment with 15d-PGJ(2) decreased influenza-induced lung inflammation, as shown by the diminished gene expression of several proinflammatory cytokines and chemokines. Unexpectedly, 15d-PGJ(2) also markedly reduced the viral load in the lungs of infected mice. This could be attributed to maintained type I interferon gene expression levels after treatment. Interestingly, pretreatment of mice with a peroxisome proliferator-activated receptor gamma (PPARγ) antagonist before 15d-PGJ(2) administration completely abrogated its protective effect against influenza infection.. Our results demonstrate for the first time that treatment of mice with 15d-PGJ(2) reduces influenza morbidity and mortality through activation of the PPARγ pathway. PPARγ agonists could thus represent a potential therapeutic avenue for influenza infections.

    Topics: Animals; Anti-Inflammatory Agents; Cytokines; Female; Lung; Mice; Mice, Inbred C57BL; Orthomyxoviridae Infections; Pneumonia; PPAR gamma; Prostaglandin D2; Survival Analysis

2012
Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles.
    The European respiratory journal, 2011, Volume: 37, Issue:6

    Microparticles (MP) are phospholipid vesicles shed by cells upon activation or apoptosis. Monocyte-derived MP upregulate the synthesis of proinflammatory mediators by lung epithelial cells; the molecular bases of such activity are unknown. Peroxisome proliferator-activated receptors (PPAR) have been demonstrated to be involved in the modulation of nuclear factor (NF)-κB transcriptional activity and inflammation. We investigated whether the upregulation of the synthesis of proinflammatory cytokines by human lung epithelial cells induced by monocyte/macrophage-derived MP involves NF-κB activation and is modulated by PPAR-γ. MP were generated by stimulation of human monocytes/macrophages with the calcium ionophore, A23187. MP were incubated with human lung epithelial cells. NF-κB translocation was assessed by electrophoretic mobility shift assay. Interleukin (IL)-8 and monocyte chemotactic protein (MCP)-1 synthesis was assessed by ELISA and RT-PCR. Stimulation of A549 alveolar cells with monocyte/macrophage-derived MP caused an increase in NF-κB activation and IL-8 and MCP-1 synthesis that was inhibited by pre-incubation with the PPAR-γ agonists, rosiglitazone and 15-deoxy-Δ12,14-prostaglandin-J2. Parallel experiments with normal human bronchial epithelial cells largely confirmed the results. The effects of PPAR-γ agonists were reversed by the specific antagonist, GW9662. Upregulation of the synthesis of proinflammatory mediators by human lung epithelial cells induced by monocyte/macrophage-derived MP is mediated by NF-κB activation through a PPAR-γ dependent pathway.

    Topics: Anilides; Bronchi; Calcimycin; Cell Line; Cell-Derived Microparticles; Cells, Cultured; Chemokine CCL2; Humans; Interleukin-8; Ionophores; Monocytes; NF-kappa B; Pneumonia; PPAR gamma; Prostaglandin D2; Rosiglitazone; Thiazolidinediones; Up-Regulation

2011
Role of 15-deoxy delta(12,14) prostaglandin J2 and Nrf2 pathways in protection against acute lung injury.
    American journal of respiratory and critical care medicine, 2005, Jun-01, Volume: 171, Issue:11

    Acute lung injury (ALI) is a disease process that is characterized by diffuse inflammation in the lung parenchyma. Recent studies demonstrated that cyclooxygenase-2 (COX-2) induced at the late phase of inflammation aids in the resolution of inflammation by generating 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2). Transcription factor Nrf2 is activated by electrophiles and exerts antiinflammatory effects by inducing the gene expression of antioxidant and detoxification enzymes.. Because 15d-PGJ2 is an endogenous electrophile, we hypothesized that it protects against ALI by activating Nrf2.. To test this hypothesis, we generated a reversible ALI model by intratracheal injection of carrageenin, an inducer of acute inflammation, whose stimulation has been known to induce COX-2.. We found that ALI induced by carrageenin was markedly exacerbated in Nrf2-knockout mice, compared with wild-type mice. Analysis of bronchoalveolar lavage fluids also revealed that the magnitude and the duration of acute inflammation, indicated by albumin concentration and the number of neutrophils, were significantly enhanced in Nrf2-knockout mice. Treatment of wild-type mice with NS-398, a selective COX-2 inhibitor, significantly exacerbated ALI to the level of Nrf2-knockout mice. In the lungs of NS-398-treated wild-type mice, both the accumulation of 15d-PGJ2 and the induction of Nrf2 target antioxidant genes were significantly attenuated. Exogenous administration of 15d-PGJ2 reversed the exacerbating effects of NS-398 with the induction of antioxidant genes.. These results demonstrated in vivo that 15d-PGJ2 plays a protective role against ALI by exploiting the Nrf2-mediated transcriptional pathway.

    Topics: Animals; Carrageenan; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Disease Models, Animal; DNA-Binding Proteins; Macrophages; Mice; Mice, Inbred BALB C; NF-E2-Related Factor 2; Nitrobenzenes; Pneumonia; Prostaglandin D2; Prostaglandin-Endoperoxide Synthases; Respiratory Distress Syndrome; Sulfonamides; Trans-Activators

2005