15-deoxy-delta(12-14)-prostaglandin-j2 has been researched along with Lymphoma--B-Cell* in 2 studies
2 other study(ies) available for 15-deoxy-delta(12-14)-prostaglandin-j2 and Lymphoma--B-Cell
Article | Year |
---|---|
PPAR-gamma-mediated regulation of normal and malignant B lineage cells.
Prostaglandins of the E-series stimulate B lymphocytes by enhancing immunoglobulin-class switching and antibody production. Little is known about whether or not other prostaglandins affect B lineage cells and perhaps counterbalance the stimulatory effects of PGE2. PGD2 is a major product of cyclooxygenase in bone marrow and in macrophages, suggesting a role for this lipid product in immunological responses. PGD2 undergoes dehydration to the biologically active prostaglandin 15-deoxy-delta 12,14-PGJ2 (15d-PGJ2) that binds to the nuclear receptor known as peroxisome proliferator-activated receptor gamma (PPAR-gamma). We found that normal mouse B cells and a variety of B lymphoma cells (e.g., 70Z/3, WEHI-231, CH12, and J558) express PPAR-gamma mRNA and the 67-kDa PPAR-gamma protein. 15d-PGJ2 had a dose-dependent antiproliferative/cytotoxic effect on normal and malignant B cells, as shown by 3H-thymidine and MTT assays. Only PPAR-gamma agonists (i.e., thiazolidinediones) mimicked the effect of 15d-PGJ2 on B lineage cells, indicating that the mechanism by which 15d-PGJ2 negatively affects B lineage cells involves PPAR-gamma. The mechanism whereby PPAR-gamma agonists induced cytotoxicity is via apoptosis, as shown by Annexin V assay. PPAR-gamma agonists may serve as a counterbalance to the stimulating effects of PGE2, which promotes B-cell differentiation. The use of prostaglandins, such as 15d-PGJ2, and synthetic PPAR-gamma agonists to induce apoptosis in B lineage cells may lead to the development of therapies for fatal PGE2-resistant B lymphomas. Topics: Animals; Apoptosis; B-Lymphocytes; Cell Lineage; Cell Survival; Immunoglobulin E; Lymphoma, B-Cell; Male; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Prostaglandin D2; Receptors, Cytoplasmic and Nuclear; Transcription Factors; Tumor Cells, Cultured | 2000 |
Peroxisome proliferator activator receptor-gamma agonists and 15-deoxy-Delta(12,14)(12,14)-PGJ(2) induce apoptosis in normal and malignant B-lineage cells.
The research described herein evaluates the expression and functional significance of peroxisome proliferator activator receptor-gamma (PPAR-gamma) on B-lineage cells. Normal mouse B cells and a variety of B lymphoma cells reflective of stages of B cell differentiation (e.g., 70Z/3, CH31, WEHI-231, CH12, and J558) express PPAR-gamma mRNA and, by Western blot analysis, the 67-kDa PPAR-gamma protein. 15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), a PPAR-gamma agonist, has a dose-dependent antiproliferative and cytotoxic effect on normal and malignant B cells as shown by [(3)H]thymidine and 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assays. Only PPAR-gamma agonists (thiazolidinediones), and not PPAR-alpha agonists, mimicked the effect of 15d-PGJ(2) on B-lineage cells, indicating that the mechanism by which 15d-PGJ(2) negatively affects B-lineage cells involves in part PPAR-gamma. The mechanism by which PPAR-gamma agonists induce cytotoxicity is via apoptosis, as shown by annexin V staining and as confirmed by DNA fragmentation detected using the TUNEL assay. Interestingly, addition of PGF(2alpha), which was not known to affect lymphocytes, dramatically attenuated the deleterious effects of PPAR-gamma agonists on B lymphomas. Surprisingly, 15d-PGJ(2) induced a massive increase in nuclear mitogen-activated protein kinase activation, and pretreatment with PGF(2alpha) blunted the mitogen-activated protein kinase activation. This is the first study evaluating PPAR-gamma expression and its significance on B lymphocytes. PPAR-gamma agonists may serve as a counterbalance to the stimulating effects of other PGs, namely PGE(2), which promotes B cell differentiation. Finally, the use of PGs, such as 15d-PGJ(2), and synthetic PPAR-gamma agonists to induce apoptosis in B-lineage cells may lead to the development of novel therapies for fatal B lymphomas. Topics: Animals; Apoptosis; B-Lymphocytes; Cell Lineage; Cells, Cultured; Chromans; Dinoprost; Hypoglycemic Agents; Lymphoma, B-Cell; Male; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred DBA; Prostaglandin D2; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Thiazoles; Thiazolidinediones; Transcription Factors; Troglitazone; Tumor Cells, Cultured | 2000 |