15-deoxy-delta(12-14)-prostaglandin-j2 has been researched along with Kidney-Diseases* in 3 studies
3 other study(ies) available for 15-deoxy-delta(12-14)-prostaglandin-j2 and Kidney-Diseases
Article | Year |
---|---|
The role of peroxisome-proliferator-activating receptor gamma agonists: rosiglitazone and 15-deoxy-delta12,14-prostaglandin J2 in chronic experimental cyclosporine A-induced nephrotoxicity.
Cyclosporine A(CsA) is an immunosuppressor frequently used in the transplant surgery and in the treatment of autoimmune diseases. The therapeutic benefits of CsA are often limited by it's main side effect-nephrotoxicity. Mechanisms of chronic CsA- induced renal damage include: activation of renin-angiotensin-aldosterone system, upregulation of transforming growth factor beta (TGF-β), oxidative stress. This study was undertaken to investigate the protective effect of the peroxisome-proliferator-activated receptors gamma (PPARs-γ) agonists: rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J2 (PGDJ2), against CsA-induced kidney injury in male Wistar rats. CsA was administered subcutaneously at a dose of 15 mg/kg/day for 28 days. Both PPAR-γ agonists were given for 28 days 0.5 hour before the administration of CsA. Rosiglitazone was administered orally at a dose of 8 mg/kg/day and PGDJ2 was given intraperitoneally at a dose of 30 μg/kg/day. CsA induced renal failure was evidenced by increased serum levels of urea, uric acid and creatinine. Serum concentrations of GSH and GSSG, lipid peroxidation products as well as NAD+/NADH, NADP+/NADPH and ADP/ATP ratios showed, that CsA induced oxidative stress and evoked an imbalanced red-ox state in the kidney. Light and electron microscope studies showed degenerative changes within renal tubules with damage to their mitochondria, interstitial fibrosis and arteriolopathy. Immunohistochemical expression of profibrotic TGF-β was assessed. The biochemical and morphological changes induced by CsA were limited by administration of both rosiglitazone and PGDJ2. Ultrastructural examination of renal tubular epithelial cells showed marked improvement within mitochondria. Our results indicate that both PPAR-γ agonists used in the experiment may play an important role in protecting against CsA-induced damage in the kidney. Topics: Animals; Creatinine; Cyclosporine; Disease Models, Animal; Glutathione; Glutathione Disulfide; Kidney; Kidney Diseases; Male; NAD; NADP; PPAR gamma; Prostaglandin D2; Protective Agents; Rats, Wistar; Rosiglitazone; Thiazolidinediones; Urea; Uric Acid | 2014 |
Rosiglitazone ameliorates cisplatin-induced renal injury in mice.
Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin nephrotoxicity. Agonists of the peroxisome proliferator-activated receptor-gamma (PPARgamma), such as rosiglitazone, have been recently demonstrated to regulate inflammation by modulating the production of inflammatory mediators and adhesion molecules. The purpose of this study was to examine the protective effects of rosiglitazone on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection.. Mice were treated with cisplatin with or without pre-treatment with rosiglitazone. Renal functions, histological findings, aquaporin 2 (AQP2) and adhesion molecule expression, macrophage infiltration and tumour necrosis factor-alpha (TNF-alpha) levels were investigated. The effect of rosiglitazone on nuclear factor (NF)-kappaB activity and on viability was examined using cultured human kidney (HK-2) cells.. Rosiglitazone significantly decreased both the damage to renal function and histological pathology after cisplatin injection. Pre-treatment with rosiglitazone reduced the systemic levels of TNF-alpha and down-regulated adhesion molecule expression in addition to the infiltration of inflammatory cells after cisplatin administration. Rosiglitazone restored the decreased AQP2 expression after cisplatin treatment. Pre-treatment with rosiglitazone blocked the phosphorylation of the p65 subunit of NF-kappaB in cultured HK-2 cells. Rosiglitazone had a protective effect via a PPARgamma-dependent pathway in cisplatin-treated HK-2 cells.. These results showed that pre-treatment with rosiglitazone attenuates cisplatin-induced renal damage through the suppression of TNF-alpha overproduction and NF-kappaB activation. Topics: Anilides; Animals; Apoptosis; C-Peptide; Cell Line; Chromans; Cisplatin; Drug Evaluation, Preclinical; Glioma; Humans; Hypoglycemic Agents; Inflammation; Insulin; Intercellular Adhesion Molecule-1; Kidney; Kidney Diseases; Kidney Function Tests; Kidney Tubules, Proximal; Macrophages; Male; Mice; Mice, Inbred C57BL; Monocytes; PPAR gamma; Prostaglandin D2; Protein Transport; Rosiglitazone; Thiazolidinediones; Transcription Factor RelA; Troglitazone; Tumor Necrosis Factor-alpha | 2006 |
The cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2 ameliorates ischemic acute renal failure.
Here we investigate the effects of the endogenous prostaglandin D2 metabolite 15-deoxy-Delta(12,14)-prostaglandin J2, on the renal dysfunction and injury caused by ischemia/reperfusion of the kidney.. Male Wistar rats, subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h, were administered 15-deoxy-Delta(12,14)-prostaglandin J2 (1 mg/kg, intravenously) 5 min prior to and again after 3 or 12 h reperfusion.. 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduced (i) renal and tubular dysfunction (serum urea and creatinine levels, creatinine clearance, fractional excretion of Na+ (FENA)), (ii) tubular and reperfusion-injury (urinary N-acetyl-beta-D-glucosaminidase, aspartate aminotransferase (ASP) and gamma-glutamyltransferase (gamma-GT)) and (iii) histological evidence of renal injury. 15-deoxy-Delta(12,14)-prostaglandin J2 also improved renal function (plasma creatinine levels) and reduced the histological signs of renal injury (after 48 h reperfusion). Administration of 15-deoxy-Delta(12,14)-prostaglandin J2 markedly reduced the expression of inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 during reperfusion (determined using immunohistochemistry). Immunohistochemical analysis of p65 translocation and Western blot analysis of IkappaB-alpha degradation revealed that 15-deoxy-Delta(12,14)-prostaglandin J2 inhibited the activation of nuclear factor (NF)-kappaB in renal cells. Subsequently, 15d-PGJ2 was able to significantly reduce nitric oxide production during renal ischemia/reperfusion and by primary cultures of rat proximal tubular (PT) cells incubated with interferon-gamma and bacterial lipopolysaccharide (LPS) in combination.. We demonstrate here, for the first time, that 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduces renal ischemia/reperfusion-injury via reduction of pro-inflammatory gene expression during reperfusion subsequent to the inhibition of the activation of NF-kappaB. Topics: Animals; Calcium-Binding Proteins; Cells, Cultured; I-kappa B Proteins; Intercellular Adhesion Molecule-1; Interferon-gamma; Ischemia; Kidney; Kidney Diseases; Kidney Tubules; Lipopolysaccharides; Male; Membrane Glycoproteins; Models, Animal; Nerve Tissue Proteins; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Prostaglandin D2; Rats; Rats, Wistar; Reperfusion Injury; Synaptotagmin I; Synaptotagmins; Time Factors | 2004 |