15-deoxy-delta(12-14)-prostaglandin-j2 has been researched along with Insulin-Resistance* in 2 studies
2 other study(ies) available for 15-deoxy-delta(12-14)-prostaglandin-j2 and Insulin-Resistance
Article | Year |
---|---|
Tumor necrosis factor alpha-induced pancreatic beta-cell insulin resistance is mediated by nitric oxide and prevented by 15-deoxy-Delta12,14-prostaglandin J2 and aminoguanidine. A role for peroxisome proliferator-activated receptor gamma activation and in
Recent studies have identified a beta-cell insulin receptor that functions in the regulation of protein translation and mitogenic signaling similar to that described for insulin-sensitive cells. These findings have raised the novel possibility that beta-cells may exhibit insulin resistance similar to skeletal muscle, liver, and fat. To test this hypothesis, the effects of tumor necrosis factor-alpha (TNFalpha), a cytokine proposed to mediate insulin resistance by interfering with insulin signaling at the level of the insulin receptor and its substrates, was evaluated. TNFalpha inhibited p70(s6k) activation by glucose-stimulated beta-cells of the islets of Langerhans in a dose- and time-dependent manner, with maximal inhibition observed at approximately 20-50 ng/ml, detected after 24 and 48 h of exposure. Exogenous insulin failed to prevent TNFalpha-induced inhibition of p70(s6k), suggesting a defect in the insulin signaling pathway. To further define mechanisms responsible for this inhibition and also to exclude cytokine-induced nitric oxide (NO) as a mediator, the ability of exogenous or endogenous insulin +/- inhibitors of nitric-oxide synthase (NOS) activity, aminoguanidine or N-monomethyl-L-arginine, was evaluated. Unexpectedly, TNFalpha and also interleukin 1 (IL-1)-induced inhibition of p70(s6k) was completely prevented by inhibitors that block NO production. Western blot analysis verified inducible NOS (iNOS) expression after TNFalpha exposure. Furthermore, the ability of IL-1 receptor antagonist protein, IRAP, to block TNFalpha-induced inhibition of p70(s6k) indicated that activation of intra-islet macrophages and the release of IL-1 that induces iNOS expression in beta-cells was responsible for the inhibitory effects of TNFalpha. This mechanism was confirmed by the ability of the peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta12, 14-prostaglandin J2 to attenuate TNFalpha-induced insulin resistance by down-regulating iNOS expression and/or blocking IL-1 release from activated macrophages. Overall, TNFalpha-mediated insulin resistance in beta-cells is characterized by a global inhibition of metabolism mediated by NO differing from that proposed for this proinflammatory cytokine in insulin-sensitive cells. Topics: Animals; Chromans; Guanidines; Hypoglycemic Agents; Insulin Resistance; Islets of Langerhans; Male; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Phosphorylation; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Ribosomal Protein S6 Kinases; Thiazoles; Thiazolidinediones; Transcription Factors; Troglitazone; Tumor Necrosis Factor-alpha | 1999 |
BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones.
Thiazolidinediones (TZDs) such as BRL 49653 are a class of antidiabetic agents that are agonists for the peroxisome proliferator-activated nuclear receptor (PPAR-gamma2). In vivo, TZDs reduce circulating levels of free fatty acids (FFAs) and ameliorate insulin resistance in individuals with obesity and NIDDM. Adipocyte production of TNF-alpha is proposed to play a role in the development of insulin resistance, and because BRL 49653 has been shown to antagonize some of the effects of TNF-alpha, we examined the effects of TNF-alpha and BRL 49653 on adipocyte lipolysis. After a 24-h incubation of TNF-alpha (10 ng/ml) with 3T3-L1 adipocytes, glycerol release increased by approximately 7-fold, and FFA release increased by approximately 44-fold. BRL 49653 (10 pmol/l) reduced TNF-alpha-induced glycerol release by approximately 50% (P < 0.001) and FFA release by approximately 90% (P < 0.001). BRL 49653 also reduced glycerol release by approximately 50% in adipocytes pretreated for 24 h with TNF-alpha. Prolonged treatment (5 days) with either BRL 49653 or another PPAR-gamma2 agonist, 15-d delta-12,14-prostaglandin J2 (15-d deltaPGJ2), blocked TNF-alpha-induced glycerol release by approximately 100%. Catecholamine (isoproterenol)-stimulated lipolysis was unaffected by BRL 49653 and 15-d deltaPGJ2. BRL 49653 partially blocked the TNF-alpha-mediated reduction in protein levels of hormone-sensitive lipase and perilipin A, two proteins involved in adipocyte lipolysis. These data suggest a novel pathway that may contribute to the ability of the TZDs to reduce serum FFA and increase insulin sensitivity. Topics: 3T3 Cells; Adipocytes; Animals; Carrier Proteins; Fatty Acids, Nonesterified; Glycerol; Hypoglycemic Agents; Insulin Resistance; Lipolysis; Mice; Perilipin-1; Phosphoproteins; Prostaglandin D2; Rosiglitazone; Sterol Esterase; Thiazoles; Thiazolidinediones; Tumor Necrosis Factor-alpha | 1998 |