15-deoxy-delta(12-14)-prostaglandin-j2 has been researched along with Fibrosis* in 3 studies
3 other study(ies) available for 15-deoxy-delta(12-14)-prostaglandin-j2 and Fibrosis
Article | Year |
---|---|
Antifibrotic Actions of Peroxisome Proliferator-Activated Receptor γ Ligands in Corneal Fibroblasts Are Mediated by β-Catenin-Regulated Pathways.
Wound healing after corneal injury typically involves fibrosis, with transforming growth factor β1 (TGF-β1) as one of its strongest mediators. A class of small molecules-peroxisome proliferator-activated receptor γ (PPARγ) ligands-exert potent antifibrotic effects in the cornea by blocking phosphorylation of p38 mitogen-activated protein kinase (MAPK). However, why this blocks fibrosis remains unknown. Herein, we show that PPARγ ligands (rosiglitazone, troglitazone, and 15-deoxy-Δ12,14-prostaglandin J2) decrease levels of β-catenin. We also show that β-catenin siRNA and the Wingless/integrated (Wnt) inhibitor pyrvinium block the ability of corneal fibroblasts to up-regulate synthesis of α-smooth muscle actin (α-SMA), collagen 1 (COL1), and fibronectin (FN) in response to TGF-β1. Activation of TGF-β receptors and p38 MAPK increased glycogen synthase kinase 3β (GSK3β) phosphorylation, whereas a chemical inhibitor of p38 MAPK (SB203580) reduced the phosphorylation of GSK3β, decreasing active β-catenin levels in both cytoplasmic and nuclear fractions. Finally, lithium chloride, a GSK3 inhibitor, also attenuated the TGF-β1-induced increase in α-SMA, COL1, and FN expression. All in all, our results suggest that TGF-β1 stimulation increases active β-catenin concentration in cultured corneal fibroblasts through p38 MAPK regulation of canonical Wnt/β-catenin signaling, increasing α-SMA, COL1, and FN synthesis. Thus, PPARγ ligands, by blocking TGF-β1-induced p38 MAPK phosphorylation, prevent increases in both total and active β-catenin through p38 MAPK-GSK3β signaling. Topics: Actins; Animals; beta Catenin; Cats; Chromans; Collagen Type I; Cornea; Fibroblasts; Fibronectins; Fibrosis; Glycogen Synthase Kinase 3 beta; Lithium Chloride; p38 Mitogen-Activated Protein Kinases; Phosphorylation; PPAR gamma; Prostaglandin D2; Pyrvinium Compounds; Receptors, Transforming Growth Factor beta; Rosiglitazone; Signal Transduction; Thiazolidinediones; Transforming Growth Factor beta1; Troglitazone | 2017 |
15-deoxy-Delta(12,14)-prostaglandin J(2) inhibits fibrogenic response in human hepatoma cells.
Liver fibrosis can be induced by environmental chemicals or toxicants, and finally stimulates fibrogenic cytokines expression, such as transforming growth factor-beta (TGF-beta) and its downstream mediator connective tissue growth factor (CTGF). 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a metabolite of arachidonic acid, can act as a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, and function as either anti-inflammatory or inflammatory agents in different cell types. In this study, CTGF was detected in three human hepatoma cell lines, Hep3B, HepG2, and Huh-7, and it was up-regulated by TGF-beta. 15d-PGJ(2) significantly inhibited TGF-beta-induced CTGF protein and mRNA expressions, and promoter activity in hepatoma cells. 15d-PGJ(2) suppressed TGF-beta-induced Smad2 phosphorylation, however enhancing the phosphorylation of ERK, c-Jun N-terminal kinase (JNK), and p38 in TGF-beta-treated Hep3B cells. Other PPAR ligands like the PPARgamma agonist, troglitazone; the PPARalpha agonist, Wy-14643, and bezafibrate were also able to inhibit TGF-beta-induced CTGF. The results suggest that 15d-PGJ(2) inhibits TGF-beta-induced CTGF expression by inhibiting the phosphorylation of Smad2, which is independent of PPAR, and 15d-PGJ(2) might also act through a PPAR-dependent mechanism in human hepatoma cells. 15d-PGJ(2) might have a beneficent effect on prevention of liver fibrosis induced by environmental toxicants. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Survival; Connective Tissue Growth Factor; Fibrosis; Gene Expression; Hepatic Stellate Cells; Hepatocytes; Humans; Immunologic Factors; Liver Cirrhosis; Phosphorylation; Prostaglandin D2; RNA, Messenger; Smad2 Protein; Transforming Growth Factor beta; Up-Regulation | 2009 |
Agonists at PPAR-gamma suppress angiotensin II-induced production of plasminogen activator inhibitor-1 and extracellular matrix in rat cardiac fibroblasts.
Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit cardiac fibrosis. However, the underlying mechanisms are poorly understood. We investigated the regulation by PPAR-gamma ligands of angiotensin (Ang) II-induced plasminogen activator inhibitor (PAI)-1, extracellular matrix (ECM) production and cell growth in cardiac fibroblasts.. The effects of PPAR-gamma ligands on Ang II-induced PAI-1, ECM expression and cell growth were assessed in primary-cultured rat cardiac fibroblasts; cardiac PAI-1 and ECM production was examined in Ang II-infused rats.. In growth-arrested cardiac fibroblasts, PPAR-gamma ligands rosiglitazone and 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) dose-dependently attenuated Ang II-induced cell proliferation and expression of PAI-1, collagen type-I, collagen type-III and fibronectin. An accompanying increase in PPAR-gamma expression and activation was also observed. These suppressive effects were attenuated by the PPAR-gamma antagonists GW9662 and bisphenol A diglycidyl ether (BADGE). Moreover, rosiglitazone and 15d-PGJ2 inhibited in part the expression and phosphorylation of Ang II-induced transforming growth factor (TGF)-beta1, Smad2/3 and c-Jun NH(2)-terminal kinase (JNK). Ang II infusion in rats markedly increased left ventricular production of PAI-1, collagen and fibronectin, with a concurrent increase in the ratios of heart weight/body weight and left ventricle weight/body weight. Co-treatment with rosiglitazone significantly decreased these levels and upregulated PPAR-gamma expression.. Rosiglitazone and 15d-PGJ2 suppress Ang II-induced production of PAI-1 and ECM probably via interactions between PPAR-gamma and TGF-beta1/Smad2/3 and JNK signalling pathways. It is suggested that PPAR-gamma and its ligands may have potential applications in preventing cardiac fibrosis. Topics: Angiotensin II; Animals; Cell Proliferation; Dose-Response Relationship, Drug; Extracellular Matrix; Fibroblasts; Fibrosis; Gene Expression Regulation; Male; Myocardium; Plasminogen Activator Inhibitor 1; PPAR gamma; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Rosiglitazone; Signal Transduction; Thiazolidinediones; Transforming Growth Factor beta1 | 2008 |