14-15-dihydroxyeicosatrienoic-acid and Disease-Models--Animal

14-15-dihydroxyeicosatrienoic-acid has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for 14-15-dihydroxyeicosatrienoic-acid and Disease-Models--Animal

ArticleYear
CYP2J2 overexpression ameliorates hyperlipidemia via increased fatty acid oxidation mediated by the AMPK pathway.
    Obesity (Silver Spring, Md.), 2015, Volume: 23, Issue:7

    The study aims to investigate the effect of cytochrome P450 2J2 (CYP2J2) overexpression on hyperlipidemia in mice and further to explore its effect on fatty acid oxidation in vivo and in vitro.. The effects and mechanisms of endothelial-specific CYP2J2 transgene (Tie2-CYP2J2-Tr) on lipid and fatty acid metabolism were investigated in high-fat diet (HFD) -treated mice. HepG2, LO2 cells, and HUVECs were exposed to 0.4 mM free fatty acid (FFA) for 24 h and used as a model to investigate the roles of CYP2J2 overexpression and epoxyeicosatrienoic acids (EETs) on fatty acid β-oxidation in vitro.. Tie2-CYP2J2-Tr mice had significantly lower plasma and liver triglycerides, lower liver cholesterol and fatty acids, and reduced HFD-induced lipid accumulation. CYP2J2 overexpression resulted in activation of the hepatic and endothelial AMPKα, increased ACC phosphorylation, and increased expression of CPT-1 and PPARα, which were all reduced by HFD treatment. In FFA-treated HepG2, LO2, and HUVECs, both CYP2J2 overexpression and EETs significantly decreased lipid accumulation and increased fatty acid oxidation via activating the AMPK and PPARα pathways.. Endothelial-specific CYP2J2 overexpression alleviates HFD-induced hyperlipidemia in vivo. CYP2J2 ameliorates FFA-induced dyslipidemia via increased fatty acid oxidation mediated by the AMPK and PPARα pathways.

    Topics: 8,11,14-Eicosatrienoic Acid; AMP-Activated Protein Kinases; Animals; Cholesterol; Diet, High-Fat; Disease Models, Animal; Fatty Acids; Fatty Acids, Nonesterified; Hyperlipidemias; Lipid Metabolism; Liver; Mice; Mice, Inbred C57BL; Mice, Transgenic; Oxidative Stress; Triglycerides

2015
Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.
    Oncotarget, 2015, Sep-22, Volume: 6, Issue:28

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.

    Topics: 8,11,14-Eicosatrienoic Acid; Acetophenones; Aged; Angiotensin II; Animals; Cardio-Renal Syndrome; Cardiotonic Agents; Cell Line; Disease Models, Animal; Epoxide Hydrolases; Female; Fibrosis; Humans; Kidney Failure, Chronic; Male; Middle Aged; Myocytes, Cardiac; Rats, Sprague-Dawley; Stroke Volume; Up-Regulation; Ventricular Function, Left; Ventricular Remodeling

2015
Role of soluble epoxide hydrolase in the sex-specific vascular response to cerebral ischemia.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2009, Volume: 29, Issue:8

    Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilator eicosanoids called epoxyeicosatrienoic acids (EETs), is sexually dimorphic and suppressed by estrogen. We determined if the sex difference in blood flow during focal cerebral ischemia is linked to sEH. Soluble epoxide hydrolase expression in brain, hydrolase activity in cerebral vessels, and plasma 14,15-dihydroxyeicosatrienoic acid (14,15-DHET) were determined in male and female wild-type (WT) and sEH knockout (sEHKO) mice. Male, female, and ovariectomized female WT and sEHKO mice were subjected to 2-h middle cerebral artery occlusion (MCAO) and infarct size was measured at 24 h of reperfusion. Laser-Doppler cortical perfusion during MCAO was compared among groups and differences in cortical blood flow rates were confirmed using in vivo quantitative optical microangiography. Cerebrovascular expression and activity of sEH and plasma 14,15-DHET were lower in WT female than male mice, and blood flow during MCAO was higher and infarct size was smaller in WT female compared with male mice. Sex differences in cerebral blood flow and ischemic damage were abolished after ovariectomy and were absent in sEHKO mice. We conclude that sEH is an important mechanism underlying sex-linked differences in blood flow and brain damage after cerebral ischemia.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Blood Flow Velocity; Blotting, Western; Brain Ischemia; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Epoxide Hydrolases; Estrogens; Female; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Knockout; Ovariectomy; Sex Characteristics; Solubility

2009
Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats.
    Basic & clinical pharmacology & toxicology, 2008, Volume: 102, Issue:5

    Cytochrome P450-derived epoxyeicosatrienoic acids (EET) are biologically active metabolites of arachidonic acid that have potent effects on renal vascular reactivity and tubular ion transport and have been implicated in the control of blood pressure. EETs are hydrolyzed to their less active diols, dihydroxyeicosatrienoic acids (DHET), by the enzyme soluble epoxide hydrolase (sEH). 1,3-dicyclohexylurea (DCU), a potent sEH inhibitor, lowers systemic blood pressure in spontaneously hypertensive rats when dosed intraperitoneally. However, DCU has poor aqueous solubility, posing a challenge for in vivo oral delivery. To overcome this limitation, we formulated DCU in a nanosuspension using wet milling. Milling reduced particle size, increasing the total surface area by approximately 40-fold. In rats chronically infused with angiotensin II, the DCU nanosuspension administered orally twice daily for 4 days produced plasma exposures an order of magnitude greater than unmilled DCU and lowered blood pressure by nearly 30 mmHg. Consistent with the mechanism of sEH inhibition, DCU increased plasma 14,15-EET and decreased plasma 14,15-DHET levels. These data confirm the antihypertensive effect of sEH inhibition and demonstrate that greatly enhanced exposure of a low-solubility compound is achievable by oral delivery using a nanoparticle drug delivery system.

    Topics: 8,11,14-Eicosatrienoic Acid; Administration, Oral; Animals; Blood Pressure; Chromatography, Liquid; Disease Models, Animal; Epoxide Hydrolases; Hypertension; Male; Nanoparticles; Particle Size; Rats; Rats, Sprague-Dawley; Solubility; Suspensions; Tandem Mass Spectrometry; Urea

2008