13-hydroxy-9-11-octadecadienoic-acid has been researched along with Psoriasis* in 5 studies
5 other study(ies) available for 13-hydroxy-9-11-octadecadienoic-acid and Psoriasis
Article | Year |
---|---|
Combining mechanism-based prediction with patient-based profiling for psoriasis metabolomics biomarker discovery.
Psoriasis is a chronic, debilitating skin condition that affects approximately 125 million individuals worldwide. The cause of psoriasis appears multifactorial, and no unified mitigating signal or single antigenic target has been identified to date. Metabolomic studies hold great potential for explaining disease mechanism, facilitating early diagnosis, and identifying potential therapeutic areas. Here, we present an integrated disease metabolomic biomarker discovery strategy that combines mechanism-based biomarker discovery with clinical sample-based metabolomic profiling. We applied this strategy in identifying and understanding metabolite biomarkers for psoriasis. The key innovation of our strategy is a novel mechanism-based metabolite prediction system, mmPredict, which assimilates vast amounts of existing knowledge of diseases and metabolites. mmPredict first constructed a psoriasis-specific mouse mutational phenotype profile. It then constructed phenotype profiles for a total of 259,170 chemicals/metabolites using known chemical genetics and human metabolomic data. Metabolites were then prioritized based on the phenotypic similarities between disease- and metabolites. We evaluated mmPredict using 150 metabolites identified using our in-house metabolome profiling study of psoriasis patient samples. mmPredict found 96 of the 150 metabolites and ranked them highly (recall: 0.64, mean ranking: 8.73%, median ranking: 2.33%, p-value: 4.75E-44). These results show that mmPredict is consistent with, as well as a complement to, traditional human metabolomic profiling studies. We then developed a strategy to combine outputs from both systems and found that the oxidative product of linoleic acid, 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13- HODE), ranked highly by both mmPredict and our in-house experiments. Our integrated analysis indicates that 13- HODE may be a mechanistic link between psoriasis and cardiovascular comorbidities associated with psoriasis. In summary, we developed an integrated metabolomic prediction system that combines both human metabolomic studies and mechanism-based prediction and demonstrated its application in the skin disease psoriasis. Our system is highly general and can be applied to other diseases when patient-based metabolomic profiling data becomes more increasingly available. Data is publicly available at: http://nlp.. edu/public/data/mmPredict_PSO. Topics: Animals; Biomarkers; Disease Models, Animal; Genome; Humans; Linoleic Acids; Metabolome; Metabolomics; Mice; Phenotype; Psoriasis | 2017 |
Epidermal FABP (FABP5) regulates keratinocyte differentiation by 13(S)-HODE-mediated activation of the NF-κB signaling pathway.
Fatty acid-binding proteins (FABPs) are postulated to serve as lipid shuttles that solubilize hydrophobic fatty acids and deliver them to appropriate intracellular sites. Epidermal FABP (E-FABP/FABP5) is predominantly expressed in keratinocytes and is overexpressed in the actively proliferating tissue characteristic of psoriasis and wound healing. In this study, we found decreased expression of the differentiation-specific proteins keratin 1, involucrin, and loricrin in E-FABP(-/-) keratinocytes relative to E-FABP(+/+) keratinocytes. We also determined that incorporation of linoleic acid was significantly reduced in E-FABP(-/-) keratinocytes. Although linoleic acid did not directly affect keratinocyte differentiation, keratin 1 expression was induced by the linoleic acid derivative 13(S)-hydroxyoctadecadienoic acid (13(S)-HODE), and this induction was concomitant with increased NF-κB activity. In E-FABP(-/-) keratinocytes, the expression of 13(S)-HODE and the subsequent induction of NF-κB activity was lower than in wild-type keratinocytes. The reduction of linoleic acid in E-FABP(-/-) keratinocytes led to decreased cellular 13(S)-HODE content, resulting in decreased keratin 1 expression through downregulation of NF-κB activity. The regulation of fatty acid metabolism by E-FABP during keratinocyte differentiation suggests that E-FABP may have a role in the pathogenesis of psoriasis. Topics: Animals; Cell Differentiation; Cells, Cultured; Disease Models, Animal; Epidermis; Fatty Acid-Binding Proteins; Fatty Acids; Keratin-1; Keratinocytes; Linoleic Acid; Linoleic Acids; Membrane Proteins; Mice; Mice, Knockout; Neoplasm Proteins; NF-kappa B; Protein Precursors; Psoriasis; Signal Transduction | 2011 |
Monohydroxy fatty acids esterified to phospholipids are decreased in lesional psoriatic skin.
Because of the increasing number of reports of the important roles of monohydroxy derivatives of poly-unsaturated fatty acids in the regulation of cell function, we determined the pools of unesterified and esterified monohydroxy fatty acids (MHFAs) in keratomed epidermal slices, taken from lesional and non-lesional psoriatic skin. Extracted phospholipids were separated by thin-layer chromatography. The isolated fractions of phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidyl-ethanolamine (PE) were treated with phospholipase A2 to release fatty acids in the sn-2 position. Released MHFAs were separated by reversed-phase and straight-phase high-performance liquid chromatography and identified as the linoleic acid derivatives 9-hydroxy-octadecadienoic acid (9-HODE) and 13-hydroxy-octadecadienoic acid (13-HODE) and as the arachidonic acid derivative 15-hydroxy-eicosatetraenoic acid (15-HETE). These findings are consistent with the presence of unesterified 9-HODE, 13-HODE and 15-HETE. In contrast, 12-hydroxy-eicosatetraenoic acid (12-HETE), although found to be present in high amounts as unesterified 12-HETE, was not detectable in the phospholipids. When compared with non-lesional psoriatic skin, the levels of 9-HODE, 13-HODE and 15-HETE esterified to the sn-2 position of PC, PI and PE in lesional psoriatic skin were significantly decreased (to 28-78% of those in non-lesional skin). This depletion of MHFAs in specific phospholipids may be due to an imbalance between phospholipase and acyltransferase activities. Because the levels of esterified MHFAs may influence signal transduction and eicosanoid metabolism the described changes may be relevant for the inflammatory processes occurring in psoriasis. Topics: Esters; Fatty Acids; Humans; Hydroxyeicosatetraenoic Acids; Linoleic Acids; Linoleic Acids, Conjugated; Phospholipids; Psoriasis; Skin | 1993 |
Stereospecificity of the products of the fatty acid oxygenases derived from psoriatic scales.
The principal in vivo oxygenase products of arachidonic acid and linoleic acid in psoriatic skin scales are 12-hydroxyeicosatetraenoic acid (R/S ratio = 5.7), 13-hydroxyoctadecadienoic acid (S/R = 1.9), and 9-hydroxyoctadecadienoic acid (R/S = 2.4). Definition of the enzymatic origin of these fatty acid derivatives is an important step in assessing their possible role in the pathogenesis of psoriasis. Psoriatic skin scales were incubated with radiolabeled arachidonic acid and linoleic acid and the monohydroxylated derivatives produced in vitro were characterized. The products of incubation with [3H]arachidonic acid were an enantiopure 15(S)-[3H]hydroxyeicosatetraenoic acid and a nonracemic mixture of the 12-[3H]hydroxyeicosatetraenoic acid steroisomers (R/S ratio = 4.5). An enantiopure 13(S)-[14C]hydroxyoctadecadienoic acid was produced from [14C]linoleic acid. No radiolabeled products were derived from incubations with heat-denatured scales. These results provide evidence for two distinct oxygenase activities that are preserved in psoriatic skin scales. One is that of an omega-6 oxygenase with strict (S) stereospecificity, consistent with the activity of a lipoxygenase. This enzyme activity appears to be similar to that of the 15-lipoxygenase which has been described in cultured human keratinocytes. The second activity is that of an arachidonic acid 12(R)-oxygenase that has not been observed in normal human epidermis but which appears to be expressed in psoriatic epidermis. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Arachidonic Acid; Arachidonic Acids; Chromatography, High Pressure Liquid; Humans; Hydroxyeicosatetraenoic Acids; Linoleic Acid; Linoleic Acids; Oxidation-Reduction; Oxygenases; Psoriasis; Skin; Stereoisomerism | 1991 |
Conversion of linoleic acid and arachidonic acid by skin epidermal lipoxygenases.
Two different lipoxygenases have been identified in human and rat epidermis. One lipoxygenase has a (n-9)-specificity, converts arachidonic acid into 12-hydroxyeicosatetraenoic acid (12-HETE), and has been described by several investigators. Linoleic acid is not a substrate for this enzyme. The other lipoxygenase, with (n-6)-specificity, converts arachidonic acid into 15-HETE and linoleic acid into 13-hydroxyoctadecadienoic acid (13-HOD). Especially the latter lipoxygenase is thought to be involved in the regulation of the differentiation of the skin cells into a proper water-barrier layer. Linoleate is supposed to be the physiological substrate; this fatty acid is especially present in characteristic sphingolipids with unique structures. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Arachidonic Acid; Arachidonic Acids; Chromatography, High Pressure Liquid; Epidermis; Humans; Hydroxyeicosatetraenoic Acids; Linoleic Acid; Linoleic Acids; Linoleic Acids, Conjugated; Lipoxygenase; Psoriasis; Skin | 1987 |