13-hydroxy-9-11-octadecadienoic-acid and Hypoxia

13-hydroxy-9-11-octadecadienoic-acid has been researched along with Hypoxia* in 1 studies

Other Studies

1 other study(ies) available for 13-hydroxy-9-11-octadecadienoic-acid and Hypoxia

ArticleYear
The novel pathway for ketodiene oxylipin biosynthesis in Jerusalem artichoke (Helianthus tuberosus) tubers.
    Biochimica et biophysica acta, 2004, Nov-08, Volume: 1686, Issue:1-2

    The new route of the plant lipoxygenase pathway, directed specifically towards the ketodiene formation, was detected during in vitro experiments with Jerusalem artichoke (Helianthus tuberosus) tubers. Through this pathway (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD) is reduced to corresponding 13-hydroxy acid (13-HOD), which is in turn dehydrogenated into ketodiene (9Z,11E,13S)-13-oxo-9,11-octadecadienoic acid (13-KOD). Dehydrogenation of 13-HOD into 13-KOD was not dependent on the presence of either NAD or NADP, but was strongly dependent on the presence of oxygen. Under anoxic conditions, 13-HOD dehydrogenation was blocked, but addition of 2,6-dichlorophenolindophenol restored it. Sulfite addition fully suppressed the aerobic dehydrogenation of 13-HOD. Hydrogen peroxide is a by-product formed by the enzyme along with 13-KOD. These data suggest that the ketodiene biosynthesis in H. tuberosus tubers is catalyzed by flavin dehydrogenase. (9S,10E,12Z)-9-Hydroxy-10,12-octadecadienoic acid (9-HOD) is dehydrogenated by this enzyme as effectively as 13-HOD, while alpha-ketol, (9Z)-12-oxo-13-hydroxy-9-octadecenoic acid, and ricinoleic acid did not act as substrates for dehydrogenase. The enzyme was soluble and possessed a pH optimum at pH 7.0-9.0. The only 13-HOD dehydrogenase known so far was detected in rat colon. However, unlike the H. tuberosus enzyme, the rat dehydrogenase is NAD-dependent.

    Topics: Animals; Carbon Radioisotopes; Chromatography, High Pressure Liquid; Helianthus; Hydrogen-Ion Concentration; Hypoxia; Intracellular Space; Linoleic Acids; Linolenic Acids; Lipid Peroxides; Lipoxygenase; Molecular Structure; NAD; NADP; Nuclear Magnetic Resonance, Biomolecular; Oxidoreductases; Oxygen Radioisotopes; Plant Tubers; Rats; Spectrometry, Mass, Electrospray Ionization; Substrate Specificity

2004