13-14-dihydro-15-ketoprostaglandin-d2 has been researched along with Inflammation* in 2 studies
2 other study(ies) available for 13-14-dihydro-15-ketoprostaglandin-d2 and Inflammation
Article | Year |
---|---|
Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2.
The chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) is a G protein-coupled receptor that mediates the pro-inflammatory effects of prostaglandin D(2) (PGD(2)) generated in allergic inflammation. The CRTH2 receptor shares greatest sequence similarity with chemoattractant receptors compared with prostanoid receptors. To investigate the structural determinants of CRTH2 ligand binding, we performed site-directed mutagenesis of putative mCRTH2 ligand-binding residues, and we evaluated mutant receptor ligand binding and functional properties. Substitution of alanine at each of three residues in the transmembrane (TM) helical domains (His-106, TM III; Lys-209, TM V; and Glu-268, TM VI) and one in extracellular loop II (Arg-178) decreased PGD(2) binding affinity, suggesting that these residues play a role in binding PGD(2). In contrast, the H106A and E268A mutants bound indomethacin, a nonsteroidal anti-inflammatory drug, with an affinity similar to the wild-type receptor. HEK293 cells expressing the H106A, K209A, and E268A mutants displayed reduced inhibition of intracellular cAMP and chemotaxis in response to PGD(2), whereas the H106A and E268A mutants had functional responses to indomethacin similar to the wild-type receptor. Binding of PGE(2) by the E268A mutant was enhanced compared with the wild-type receptor, suggesting that Glu-268 plays a role in determining prostanoid ligand selectivity. Replacement of Tyr-261 with phenylalanine did not affect PGD(2) binding but decreased the binding affinity for indomethacin. These results provided the first details of the ligand binding pocket of an eicosanoid-binding chemoattractant receptor. Topics: Alanine; Animals; Anti-Inflammatory Agents, Non-Steroidal; Binding, Competitive; Cell Line; Cell Movement; Chemotactic Factors; Chemotaxis; Cyclic AMP; Dose-Response Relationship, Drug; Eicosanoids; Enzyme-Linked Immunosorbent Assay; Flow Cytometry; Glutamic Acid; Humans; Hypersensitivity; Indomethacin; Inflammation; Kinetics; Ligands; Mice; Models, Biological; Models, Molecular; Mutagenesis, Site-Directed; Mutation; Phenylalanine; Prostaglandins; Protein Binding; Protein Structure, Tertiary; Receptors, G-Protein-Coupled; Receptors, Immunologic; Receptors, Prostaglandin; Tyrosine | 2005 |
Prostaglandin D2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells.
PGD2, produced by mast cells, has been detected in high concentrations at sites of allergic inflammation. It can stimulate vascular and other inflammatory responses by interaction with D prostanoid receptor (DP) and chemoattractant receptor-like molecule expressed on Th2 cells (CRTH2) receptors. A significant role for PGD2 in mediating allergic responses has been suggested based on the observation that enhanced eosinophilic lung inflammation and cytokine production is apparent in the allergen-challenged airways of transgenic mice overexpressing human PGD2 synthase, and PGD2 can enhance Th2 cytokine production in vitro from CD3/CD28-costimulated Th2 cells. In the present study, we investigated whether PGD2 has the ability to stimulate Th2 cytokine production in the absence of costimulation. At concentrations found at sites of allergic inflammation, PGD2 preferentially elicited the production of IL-4, IL-5, and IL-13 by human Th2 cells in a dose-dependent manner without affecting the level of the anti-inflammatory cytokine IL-10. Gene transcription peaked within 2 h, and protein release peaked approximately 8 h after stimulation. The effect of PGD2 was mimicked by the selective CRTH2 agonist 13,14-dihydro-15-keto-PGD2 but not by the selective DP agonist BW245C, suggesting that the stimulation is mediated by CRTH2 and not DP. Ramatroban, a dual CRTH2/thromboxane-like prostanoid receptor antagonist, markedly inhibited Th2 cytokine production induced by PGD2, while the selective thromboxane-like prostanoid receptor antagonist SQ29548 was without effect. These data suggest that PGD2 preferentially up-regulates proinflammatory cytokine production in human Th2 cells through a CRTH2-dependent mechanism in the absence of any other costimulation and highlight the potential utility of CRTH2 antagonists in the treatment of allergic diseases. Topics: Base Sequence; Bridged Bicyclo Compounds, Heterocyclic; Carbazoles; Cells, Cultured; Cytokines; DNA; Fatty Acids, Unsaturated; Humans; Hydantoins; Hydrazines; Inflammation; Inflammation Mediators; Interleukin-13; Interleukin-4; Interleukin-5; Prostaglandin D2; Receptors, Immunologic; Receptors, Prostaglandin; Sulfonamides; Th2 Cells; Up-Regulation | 2005 |