12-oxophytodienoic-acid has been researched along with Disease-Resistance* in 9 studies
9 other study(ies) available for 12-oxophytodienoic-acid and Disease-Resistance
Article | Year |
---|---|
Oxylipins Other Than Jasmonic Acid Are Xylem-Resident Signals Regulating Systemic Resistance Induced by
Multiple long-distance signals have been identified for pathogen-induced systemic acquired resistance, but mobile signals for symbiont-induced systemic resistance (ISR) are less well understood. We used ISR-positive and -negative mutants of maize ( Topics: Cyclopentanes; Disease Resistance; Fatty Acids, Unsaturated; Gene Expression Regulation, Plant; Isomerism; Lipoxygenase; Oxylipins; Plant Diseases; Trichoderma; Xylem; Zea mays | 2020 |
Two oxylipins 12-OPDA (12-Oxo-10( Topics: Colletotrichum; Disease Resistance; Fatty Acids, Unsaturated; Oxylipins; Plant Leaves; Zea mays | 2020 |
Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato.
In cultivated tomato (Solanum lycopersicum), increases in photosynthetically active radiation (PAR) induce type VI leaf glandular trichomes, which are important defensive structures against arthropod herbivores. Yet, how PAR affects the type VI trichome-associated leaf chemistry and its biological significance with respect to other photomorphogenic responses in this agronomically important plant species is unknown. We used the type VI trichome-deficient tomato mutant odorless-2 (od-2) and its wild type to investigate the influence of PAR on trichome-associated chemical defenses against thrips (Frankliniella occidentalis). High PAR increased thrips resistance in wild-type plants, but not in od-2. Furthermore, under high PAR, thrips preferred od-2 over the wild type. Both genotypes increased type VI trichome densities under high PAR. Wild-type plants, however, produced more trichome-associated allelochemicals, i.e. terpenes and phenolics, these being undetectable or barely altered in od-2. High PAR increased leaf number and thickness, and induced profound but similar metabolomic changes in wild-type and od-2 leaves. Enhanced PAR also increased levels of ABA in wild-type and od-2 plants, and of auxin in od-2, while the salicylic acid and jasmonate concentrations were unaltered. However, in both genotypes, high PAR induced the expression of jasmonic acid-responsive defense-related genes. Taken together, our results demonstrate that high PAR-mediated induction of trichome-associated chemical defenses plays a prominent role in tomato-thrips interactions. Topics: Abscisic Acid; Animals; Cyclopentanes; Disease Resistance; Fatty Acids, Unsaturated; Gene Expression Regulation, Plant; Genotype; Indoleacetic Acids; Light; Metabolomics; Mutation; Oxylipins; Pheromones; Plant Diseases; Plant Leaves; RNA, Messenger; Salicylic Acid; Solanum lycopersicum; Thysanoptera; Trichomes; Volatile Organic Compounds | 2018 |
Induction of plant disease resistance upon treatment with yeast cell wall extract.
It has been reported that treatment with yeast cell wall extract (YCWE) induces PDF1 and PR-1 gene expression; these transcripts are important markers of plant disease resistance, though the detailed signaling mechanisms that induce these defense responses are still unknown. In this report, we found that YCWE treatment triggered rice cell suspension cultures to accumulate phenylalanine (Phe), cis-12-oxo-phytodienoic acid (OPDA), 12-hydroxyjasmonoyle isoleucine (12OHJA-Ile), and azelaic acid (AzA). YCWE treatment also reduced endogenous triacylglycerol (TG) content. The addition of Topics: Arabidopsis; Botrytis; Cell Wall; Dicarboxylic Acids; Disease Resistance; Fatty Acids, Unsaturated; Isoleucine; Oryza; Plant Diseases; Saccharomyces | 2017 |
A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice.
Understanding how plants allocate their resources to growth or defence is of long-term importance to the development of new and improved varieties of different crops. Using molecular genetics, plant physiology, hormone analysis and Next-Generation Sequencing (NGS)-based transcript profiling, we have isolated and characterized the rice (Oryza sativa) LESION AND LAMINA BENDING (LLB) gene that encodes a chloroplast-targeted putative leucine carboxyl methyltransferase. Loss of LLB function results in reduced growth and yield, hypersensitive response (HR)-like lesions, accumulation of the antimicrobial compounds momilactones and phytocassanes, and constitutive expression of pathogenesis-related genes. Consistent with these defence-associated responses, llb shows enhanced resistance to rice blast (Magnaporthe oryzae) and bacterial blight (Xanthomonas oryzae pv. oryzae). The lesion and resistance phenotypes are likely to be caused by the over-accumulation of jasmonates (JAs) in the llb mutant including the JA precursor 12-oxo-phytodienoic acid. Additionally, llb shows an increased lamina inclination and enhanced early seedling growth due to elevated brassinosteroid (BR) synthesis and/or signalling. These findings show that LLB functions in the chloroplast to either directly or indirectly repress both JA- and BR-mediated responses, revealing a possible mechanism for controlling how plants allocate resources for defence and growth. Topics: Amino Acid Sequence; Chloroplasts; Cyclopentanes; Disease Resistance; Fatty Acids, Unsaturated; Genes, Reporter; Magnaporthe; Mutation; Oryza; Oxylipins; Phenotype; Plant Diseases; Plant Growth Regulators; Plant Leaves; Seedlings; Xanthomonas | 2016 |
Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
Resistance of tomato (Solanum Lycopersicum) to the fungal pathogen Botrytis cinerea requires complex interplay between hormonal signalling. In this study, we explored the involvement of new oxylipins in the tomato basal and induced response to this necrotroph through the functional analysis of the tomato α-dioxygenase2 (α-DOX2)-deficient mutant divaricata. We also investigated the role of SA in the defence response against this necrotrophic fungus using SA-deficient tomato nahG plants. The plants lacking dioxigenase α-DOX2, which catalyses oxylipins production from fatty acids, were more susceptible to Botrytis, and hexanoic acid-induced resistance (Hx-IR) was impaired; hence α-DOX2 is required for both tomato defence and the enhanced protection conferred by natural inducer hexanoic acid (Hx) against B. cinerea. The divaricata plants accumulated less pathogen-induced callose and presented lower levels of jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) upon infection if compared to the wild type. Glutathion-S-transferase (GST) gene expression decreased and ROS production significantly increased in Botrytis-infected divaricata plants. These results indicate that absence of α-DOX2 influences the hormonal changes, oxidative burst and callose deposition that occur upon Botrytis infection in tomato. The study of SA-deficient nahG tomato plants showed that the plants with low SA levels displayed increased resistance to Botrytis, but were unable to display Hx-IR. This supports the involvement of SA in Hx-IR. NaghG plants displayed reduced callose and ROS accumulation upon infection and an increased GST expression. This reflects a positive relationship between SA and these defensive mechanisms in tomato. Finally, Hx boosted the pathogen-induced callose in nahG plants, suggesting that this priming mechanism is SA-independent. Our results support the involvement of the oxylipins pathway and SA in tomato response to Botrytis, probably through complex crosstalk of the hormonal balance with callose and ROS accumulation, and reinforce the role of the oxidative stress in the outcome of the plant-Botrytis interaction. Topics: Botrytis; Caproates; Cyclopentanes; Dioxygenases; Disease Resistance; Fatty Acids, Unsaturated; Gene Expression Regulation, Plant; Glucans; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Reactive Oxygen Species; Salicylic Acid; Solanum lycopersicum | 2015 |
Tetranychus urticae-triggered responses promote genotype-dependent conspecific repellence or attractiveness in citrus.
The citrus rootstocks sour orange and Cleopatra mandarin display differential resistance against Tetranychus urticae. Sour orange plants support reduced oviposition, growth rates and damage compared with Cleopatra mandarin plants. Jasmonic acid signalling and flavonoid accumulation have been revealed as key mechanisms for the enhanced resistance of sour orange plants. In this study, we observed that the release of T. urticae herbivore-induced plant volatiles (HIPVs) from sour orange plants has a marked repellent effect on conspecific mites associated with the production of the terpenes α-ocimene, α-farnesene, pinene and d-limonene, and the green leaf volatile 4-hydroxy-4-methyl-2-pentanone. By contrast, T. urticae HIPVs from Cleopatra mandarin plants promote conspecific mite attraction associated with an increase in (2-butoxyethoxy) ethanol, benzaldehyde and methyl salicylate levels. HIPVs released from sour orange plants following T. urticae infestation induce resistance in Cleopatra mandarin plants, thereby reducing oviposition rates and stimulating the oxylipin biosynthetic gene lipoxygenase2 (LOX2). Cleopatra HIPVs do not affect the response to T. urticae of these rootstocks. We conclude that sour orange plants promote herbivore-induced resistance in Cleopatra mandarin plants and, despite the weak basal resistance of these rootstocks, herbivore resistance can be induced through the combination of HIPVs, such as α-ocimene and d-limonene. Topics: Animals; Chromatography, High Pressure Liquid; Citrus; Cyclopentanes; Disease Resistance; Fatty Acids, Unsaturated; Gene Expression Regulation, Plant; Genotype; Herbivory; Insect Repellents; Metabolomics; Oxylipins; Plant Diseases; Plant Proteins; Salicylic Acid; Smell; Tetranychidae; Volatilization | 2015 |
Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.
Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici, so it can be applied in practice. Topics: Acetates; Biosynthetic Pathways; Cyclopentanes; Disease Resistance; Fatty Acids, Unsaturated; Flavonols; Fusarium; Gene Expression Regulation, Plant; Genes, Plant; Oxylipins; Phenols; Plant Diseases; Plant Extracts; Plant Leaves; Salicylic Acid; Seedlings; Seeds; Solanum lycopersicum; Spores, Fungal | 2015 |
Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.
Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research directions towards a better dissection of the potential crosstalk between B. cinerea, abiotic stress, and oxylipin signaling are of our particular interest. Topics: Alleles; Arabidopsis; Botrytis; Cyclopentanes; Disease Resistance; DNA, Bacterial; Droughts; Fatty Acids, Unsaturated; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Genetic Association Studies; Mutagenesis, Insertional; Mutation; Oligonucleotide Array Sequence Analysis; Oxylipins; Phenotype; Plant Diseases; Real-Time Polymerase Chain Reaction; Stress, Physiological; Up-Regulation | 2015 |