12-o-undecadienoylphorbol-13-acetate and Dermatitis

12-o-undecadienoylphorbol-13-acetate has been researched along with Dermatitis* in 2 studies

Other Studies

2 other study(ies) available for 12-o-undecadienoylphorbol-13-acetate and Dermatitis

ArticleYear
Heme oxygenase-1-mediated anti-inflammatory effects of tussilagonone on macrophages and 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice.
    International immunopharmacology, 2016, Volume: 34

    The dried flower buds of Tussilago farfara L. have been used in traditional medicine, mainly as an antitussive in the treatment of cough and other respiratory problems. In the present study, we investigated the anti-inflammatory signaling pathway via the upregulation of heme oxygenase-1 (HO-1) in response to tussilagonone (TGN), a sesquiterpene compound isolated from T. farfara. TGN induced HO-1 expression and nuclear factor-E2-related factor 2 (Nrf2) activation in RAW 264.7 cells. Nuclear translocation of Nrf2 by TGN also increased in a time- and dose-dependent manner, indicating that TGN induced HO-1 via the Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, TGN suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and reduced the mRNA expression of proinflammatory cytokines, as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. TGN inhibited the phosphorylation and degradation of inhibitory κB-α (IκB-α) and the nuclear translocation of nuclear factor (NF)-κB. However, a specific inhibitor of HO-1 reversed the TGN-mediated suppression of NO production and knockdown of HO-1 by small interfering RNA abrogated inhibitory effects of TGN on iNOS and COX-2 protein expression and NF-κB nuclear translocation. Furthermore, TGN reduced iNOS and COX-2 expression in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation mouse model. Taken together, these findings suggest an important role for TGN-induced HO-1 activation in regulating inflammatory responses. Moreover, TGN is a potent therapeutic candidate for targeting the crosstalk between Nrf2/HO-1 and the NF-κB signaling pathway in the prevention or treatment of inflammation-associated diseases.

    Topics: Animals; Anti-Inflammatory Agents; Cell Line; Cyclooxygenase 2; Dermatitis; Female; Heme Oxygenase-1; Humans; Lipopolysaccharides; Macrophages; Mice; Mice, Inbred ICR; NF-E2-Related Factor 2; NF-kappa B; Nitric Oxide Synthase Type II; Phorbol Esters; RNA, Small Interfering; Sesquiterpenes; Signal Transduction; Tussilago

2016
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain.
    Journal of neuroinflammation, 2016, 05-09, Volume: 13, Issue:1

    The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.. Here we use a well-characterised animal model of psoriasis-like skin inflammation-imiquimod-to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.. We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.. These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response.

    Topics: Aminoquinolines; Animals; Brain; CD3 Complex; Chemokines; Chemotaxis, Leukocyte; Dermatitis; Disease Models, Animal; Doublecortin Domain Proteins; Female; Flow Cytometry; Gene Expression Profiling; Imiquimod; Interferon Inducers; Leukocytes; Membrane Glycoproteins; Mice; Microtubule-Associated Proteins; Neuropeptides; Oligonucleotide Array Sequence Analysis; Phorbol Esters; RNA, Messenger; Toll-Like Receptor 7

2016