12-hydroxy-5-8-10-14-eicosatetraenoic-acid and Leukemia--Basophilic--Acute

12-hydroxy-5-8-10-14-eicosatetraenoic-acid has been researched along with Leukemia--Basophilic--Acute* in 4 studies

Other Studies

4 other study(ies) available for 12-hydroxy-5-8-10-14-eicosatetraenoic-acid and Leukemia--Basophilic--Acute

ArticleYear
LTB4 as marker of 5-LO inhibitory activity of two new N-omega-ethoxycarbonyl-4-quinolones.
    Journal of pharmaceutical and biomedical analysis, 1999, Volume: 19, Issue:3-4

    The supposed 5-LO inhibitory activity of two N-omega-ethoxycarbonyl-4-quinolones was tested determining leukotriene B4 (LTB4) in RBL-1 cell cultures, pretreated with the two compounds of interest. LTB4, obtained by solid-phase extraction (SPE) from cell cultures supernatants, was determined by micellar electrokinetic chromatography (MEKC). The analysis was performed using an uncoated capillary, filled with borate buffer at pH 8.3, containing 12.5 mM SDS as micelles generator. Therefore, following the decreasing of LTB4 it was possible to verify the 5-LO inhibitory activity of two quinolone derivatives. To asses the suitability of the use of LTB4 as marker of the activity of the new compounds, the analysis was repeated using quercetin, a well known 5-LO inhibitor.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Arachidonate 5-Lipoxygenase; Biomarkers; Calcimycin; Chromatography, High Pressure Liquid; Chromatography, Micellar Electrokinetic Capillary; Culture Media, Conditioned; Electrophoresis, Capillary; Enzyme Activation; Evaluation Studies as Topic; Hydroxyeicosatetraenoic Acids; Leukemia, Basophilic, Acute; Leukotriene B4; Lipoxygenase Inhibitors; Prostaglandins B; Quercetin; Quinolones; Rats; Sodium Dodecyl Sulfate; Tumor Cells, Cultured

1999
Mono (S) hydroxy fatty acids: novel ligands for cytosolic actin.
    Journal of lipid research, 1998, Volume: 39, Issue:7

    The ubiquitous hydroxylated fatty acids derived from arachidonic acid (HETEs) or linoleic acid (HODEs) exhibit diverse biological effects including chemotaxis, cell proliferation, and modulation of several enzymatic pathways, including the 5-lipoxygenase leading to the inflammatory leukotrienes. It was observed that 12(S)- and 15(S)-HETE and 13(S)-HODE (12- and 15-lipoxygenase-derived metabolites, respectively) inhibited the 5-lipoxygenase present in rat basophilic leukemia (RBL-1) cell homogenates whereas the 15(R) chiral enantiomer and the nonhydroxylated linoleic, oleic, and stearic acids were either less potent or ineffective. In examining the mechanism of this inhibition, the relative effectiveness of several fatty acids in displacing [3H]15-HETE bound to cytosol preparations were compared and the results indicated that these (S) hydroxy fatty acids and 5(S)-HETE were significantly more potent than either the 15(R) enantiomer, 15(S)-HETE methyl ester, arachidonic acid, or prostaglandin F2alpha. In order to identify the protein(s) that specifically binds HETEs, 15(S)-HETE biotin hydrazide was used as a probe to detect any HETE-protein complexes as this compound both inhibited the 5-lipoxygenase and interfered with the binding of [3H]15-HETE to cytosol preparations. SDS-PAGE analysis and chemiluminescent detection revealed that the major cytosolic proteins that bound this biotinylated probe had molecular masses of 43 and 51 kD. Fatty acid competition experiments indicated that the order of effectiveness in displacing this probe from these proteins was 13(S)-HODE > 5(S)-HETE approximately equal to 15(S)-HETE > > stearic acid approximately equal to arachidonic acid approximately equal to 15(R)-HETE. Amino acid sequence analysis showed that the 43 kD protein was actin. These findings suggest the possibility that actin may play a major role in the biological effects of monohydroxylated metabolites derived from cellular 5-, 12-, and 15-lipoxygenases.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Actins; Amino Acid Sequence; Animals; Arachidonate 15-Lipoxygenase; Biotinylation; Carrier Proteins; Cytosol; Dinoprost; Fatty Acid-Binding Protein 7; Fatty Acid-Binding Proteins; Hydroxyeicosatetraenoic Acids; Kinetics; Leukemia, Basophilic, Acute; Ligands; Linoleic Acid; Linoleic Acids; Molecular Sequence Data; Myelin P2 Protein; Neoplasm Proteins; Nerve Tissue Proteins; Oleic Acid; Rats; Stearic Acids; Stereoisomerism; Structure-Activity Relationship; Tumor Cells, Cultured

1998
Characterization of specific subcellular 15-hydroxyeicosatetraenoic acid (15-HETE) binding sites on rat basophilic leukemia cells.
    Biochimica et biophysica acta, 1995, Jun-06, Volume: 1256, Issue:3

    15-Hydroxyeicosatetraenoic acid [15-(S)-HETE], a major arachidonic acid metabolite produced from the 15-lipoxygenase pathway, has been characterized as an antiinflammatory cellular mediator since it can inhibit the in vivo and in vitro formation of the proinflammatory leukotrienes via the 5-lipoxygenase pathway in various cells. 15-HETE has been confirmed to inhibit the 5-lipoxygenase in rat basophilic leukemia cell (RBL-1) homogenates with an I50 = 7.7 microM. The I50 of the 12-HETE isomer was 6 microM whereas prostaglandin F2 alpha was ineffective. In order to examine the mechanistic basis underlying the inhibitory action of 15-HETE, association assays of [3H]-15-HETE with RBL-1 subcellular fractions were carried out. The presence of the zwitterionic detergent CHAPS enhanced specific [3H]-15-HETE binding in the membrane fractions three-fold and specific 15-HETE binding was distributed among the nuclear (32%)-, granule (19%)-, plasma membrane (35%)-, and cytosol (14%)-enriched fractions. Studies using combined granule and plasma membrane enriched-, CHAPS treated-fractions showed that [3H]-15-HETE binding was time-dependent, specific and reversible, sensitive to pertussis toxin treatment, and indicated a single class of binding sites with a Kd = 460 +/- 160 nM and Bmax = 5.0 +/- 1.1 nM. Competition experiments showed that the order of 15-HETE or analogs in inhibiting the binding of [3H]-15-HETE was: 15(S)-HETE > or = 12-(S)-HETE = 5-(S)-HETE > 15-(R)-HETE > arachidonic acid. Prostaglandin F2 alpha and lipoxin B4 were ineffective as competitors. The similar profiles of the binding assays and inhibition of the 5-lipoxygenase suggest that 15-HETE binding sites may mediate this inhibitory action of 15-HETE.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Binding Sites; Binding, Competitive; Calcimycin; Cell Line; Cholic Acids; Dinoprost; Hydroxyeicosatetraenoic Acids; Leukemia, Basophilic, Acute; Lipoxygenase Inhibitors; Rats; Subcellular Fractions; Tumor Cells, Cultured

1995
Saturability of esterification pathways of major monohydroxyeicosatetraenoic acids in rat basophilic leukemia cells.
    Inflammation, 1991, Volume: 15, Issue:4

    The principal monohydroxyeicosatetraenoic acids (HETEs), 5-, 12-, and 15-HETE, which can be produced by rat basophilic leukemia (RBL-1) cells, are also esterified by these cells. Exogenously added 5-, 12-, and 15-HETE were rapidly incorporated as esters in RBL cells, reaching plateau levels within 25 min. In incubations in culture medium with protein added, all three HETEs were essentially completely metabolized within 24 h. 5-HETE was esterified more rapidly and to a greater extent than 12-HETE or 15-HETE when these were incubated together with RBL cells, indicating some degree of selectivity in the esterification pathways. When arachidonic acid (AA) was incubated in increasing concentrations with constant concentrations of 15-HETE and RBL cells, the free 15-HETE concentration increased and esterified 15-HETE concentration decreased markedly at AA: 15-HETE molar ratios above 9. 15-HETE esterification in RBL cells was also markedly inhibited by the polyunsaturated fatty acids, eicosatetraynoic and eicosapentanoic acids, but not by oleic or linoleic acids. In separate experiments with unlabeled and radiolabeled substrates, the extent of incorporation of esterified HETE in RBL cells decreased at higher concentrations of 15-HETE and AA, which showed that the pathway was saturable. The shapes of the curves for these fatty acid inhibitors suggest a concentration-dependent two-compartment pathway of esterification. These data indicate that the HETEs and other 20 carbon fatty acid substrates probably compete for activity of a specific arachidonyl-CoA synthetase, which is the first and rate-limiting step for esterification of arachidonic acid by many human cells. Esterified 15-HETE was found to be predominantly in the phosphatidylethanolamine fraction of RBL cell lipids.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Arachidonic Acid; Coenzyme A Ligases; Esterification; Fatty Acids; Hydroxyeicosatetraenoic Acids; Leukemia, Basophilic, Acute; Phospholipids; Rats; Tumor Cells, Cultured

1991