12-hydroxy-5-8-10-14-eicosatetraenoic-acid has been researched along with Erythema* in 5 studies
3 trial(s) available for 12-hydroxy-5-8-10-14-eicosatetraenoic-acid and Erythema
Article | Year |
---|---|
A randomized controlled trial of green tea catechins in protection against ultraviolet radiation-induced cutaneous inflammation.
Safe systemic protection from the health hazards of ultraviolet radiation (UVR) in sunlight is desirable. Green tea is consumed globally and is reported to have anti-inflammatory properties, which may be mediated through the impact on cyclooxygenase and lipoxygenase pathways. Recent data suggest that green tea catechins (GTCs) reduce acute UVR effects, but human trials examining their photoprotective potential are scarce.. We performed a double-blind, randomized, placebo-controlled trial to examine whether GTCs protect against clinical, histologic, and biochemical indicators of UVR-induced inflammation.. Healthy adults (aged 18-65 y, phototypes I-II) were randomly allocated to 1350 mg encapsulated green tea extract (540 mg GTC) with 50 mg vitamin C or placebo twice daily for 3 mo. Impact on skin erythema, dermal leukocytic infiltration, and concentrations of proinflammatory eicosanoids was assessed after solar-simulated UVR challenge, and subject compliance was determined through assay of urinary GTC metabolite epigallocatechin glucuronide.. Volunteers were assigned to the active (n = 25) or the placebo (n = 25) group. After supplementation, median (IQR) sunburn threshold (minimal erythema dose) was 28 (20-28) and 20 (20-28) mJ/cm(2) in the active and placebo groups, respectively (nonsignificant), with no difference in AUC analysis for measured erythema index after a geometric series of 10 UVR doses. Skin immunohistochemistry showed increased neutrophil and CD3(+) T-lymphocyte numbers post-UVR in both groups (P < 0.01) with no statistically significant differences between groups after supplementation. Cyclooxygenase and lipoxygenase metabolites prostaglandin E2 (vasodilator) and 12-hydroxyeicosatetraenoicacid (chemoattractant), respectively, increased after UVR (P < 0.05), with no differences between supplementation groups.. Oral GTC (1080 mg/d) with vitamin C over 3 mo did not significantly reduce skin erythema, leukocyte infiltration, or eicosanoid response to UVR inflammatory challenge. This trial was registered at clinicaltrials.gov as NCT01032031. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Administration, Oral; Adult; Antioxidants; Ascorbic Acid; Catechin; Dietary Supplements; Dinoprostone; Dose-Response Relationship, Drug; Double-Blind Method; Erythema; Female; Humans; Inflammation; Male; Middle Aged; Skin; Sunburn; Tea; Ultraviolet Rays; Young Adult | 2015 |
Impact of EPA ingestion on COX- and LOX-mediated eicosanoid synthesis in skin with and without a pro-inflammatory UVR challenge--report of a randomised controlled study in humans.
Eicosapentaenoic acid (EPA), abundant in oily fish, is reported to reduce skin inflammation and provide photoprotection, potential mechanisms include competition with arachidonic acid (AA) for metabolism by cyclooxygenases/lipoxygenases to less pro-inflammatory mediators. We thus examine impact of EPA intake on levels of AA, EPA and their resulting eicosanoids in human skin with or without ultraviolet radiation (UVR) challenge.. In a double-blind randomised controlled study, 79 females took 5 g EPA-rich or control lipid for 12 wk. Pre- and post-supplementation, red blood cell and skin polyunsaturated fatty acids were assessed by GC, and eicosanoids from unexposed and UVR-exposed skin by LC-MS/MS. Active supplementation increased red blood cell and dermal EPA versus control (both p < 0.001), lowering relative AA:EPA content (4:1 versus 15:1 and 5:1 versus 11:1, respectively; both p < 0.001). Pre-supplementation, UVR increased PGE2, 12-hydroxyeicosatetraenoic acids, 12-HEPE (all p < 0.001) and PGE3 (p < 0.05). Post-EPA, PGE2 was reduced in unchallenged skin (p < 0.05) while EPA-derived PGE3 (non-sign) and 12-HEPE (p < 0.01) were elevated post-UVR. Thus, post-EPA, PGE2 :PGE3 was lower in unchallenged (12:1 versus 28:1; p < 0.05) and UVR exposed (12:1 versus 54:1; p < 0.01) skin; 12-hydroxyeicosatetraenoic acids:12-HEPE was lower in UVR-exposed skin (3:1 versus 11:1; p < 0.001).. Dietary EPA augments skin EPA:AA content, shifting eicosanoid synthesis towards less pro-inflammatory species, and promoting a regulatory milieu under basal conditions and in response to inflammatory insult. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Adult; Alprostadil; Arachidonic Acid; Dinoprostone; Eicosanoids; Eicosapentaenoic Acid; Erythema; Female; Humans; Lipoxygenase; Middle Aged; Prostaglandin-Endoperoxide Synthases; Skin; Ultraviolet Rays | 2014 |
Oral green tea catechin metabolites are incorporated into human skin and protect against UV radiation-induced cutaneous inflammation in association with reduced production of pro-inflammatory eicosanoid 12-hydroxyeicosatetraenoic acid.
Green tea catechins (GTC) reduce UV radiation (UVR)-induced inflammation in experimental models, but human studies are scarce and their cutaneous bioavailability and mechanism of photoprotection are unknown. We aimed to examine oral GTC cutaneous uptake, ability to protect human skin against erythema induced by a UVR dose range and impact on potent cyclo-oxygenase- and lipoxygenase-produced mediators of UVR inflammation, PGE2 and 12-hydroxyeicosatetraenoic acid (12-HETE), respectively. In an open oral intervention study, sixteen healthy human subjects (phototype I/II) were given low-dose GTC (540 mg) with vitamin C (50 mg) daily for 12 weeks. Pre- and post-supplementation, the buttock skin was exposed to UVR and the resultant erythema quantified. Skin blister fluid and biopsies were taken from the unexposed and the UVR-exposed skin 24 h after a pro-inflammatory UVR challenge (three minimal erythema doses). Urine, skin tissue and fluid were analysed for catechin content and skin fluid for PGE2 and 12-HETE by liquid chromatography coupled to tandem MS. A total of fourteen completing subjects were supplement compliant (twelve female, median 42.5 years, range 29-59 years). Benzoic acid levels were increased in skin fluid post-supplementation (P= 0.03), and methylated gallic acid and several intact catechins and hydroxyphenyl-valerolactones were detected in the skin tissue and fluid. AUC analysis for UVR erythema revealed reduced response post-GTC (P= 0.037). Pre-supplementation, PGE2 and 12-HETE were UVR induced (P= 0.003, 0.0001). After GTC, UVR-induced 12-HETE reduced from mean 64 (sd 42) to 41 (sd 32) pg/μl (P= 0.01), while PGE2 was unaltered. Thus, GTC intake results in the incorporation of catechin metabolites into human skin associated with abrogated UVR-induced 12-HETE; this may contribute to protection against sunburn inflammation and potentially longer-term UVR-mediated damage. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Administration, Oral; Adult; Camellia sinensis; Catechin; Dinoprostone; Dose-Response Relationship, Radiation; Erythema; Female; Humans; Male; Middle Aged; Skin; Ultraviolet Rays | 2013 |
2 other study(ies) available for 12-hydroxy-5-8-10-14-eicosatetraenoic-acid and Erythema
Article | Year |
---|---|
A comparison of the proinflammatory effects of 12(R)- and 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid in human skin.
Topical application of racemic 12-hydroxy-5,8,10,14-eicosatetraenoic acid [12(R,S)-HETE] produces erythema and leucocyte accumulation in human skin. Since 12(R)-HETE is more potent than its epimer 12(S)-HETE as a neutrophil chemoattractant in vitro, their proinflammatory effects have now been compared in vivo. 12(R)- and 12(S)-HETE (0.5 - 20 ug/site) were applied topically to the forearm skin of 5 healthy volunteers and the sites occluded for 6 h. Five ug each of the two enantiomers were also applied to the opposite forearm. At 6 and 24 h blood flow and the areas of erythematous responses were measured. The 5 ug application sites were biopsied at 24 h. Both enantiomers caused dose related erythema and increased blood flow at 6 and 24 h, which were not significantly different at either of the time points tested. In contrast, pronounced neutrophil infiltrates were seen in the epidermis (25.2 +/- 13 cells/hpf) and dermis (13.2 +/- 5.1 cells/hpf) 24 h after application of 12(R)-, but not 12(S)-HETE (0.02 +/- 0.02 and 1.02 +/- 0.7 cells/hpf in epidermis and dermis respectively). However, the numbers of dermal mononuclear cells accumulating in response to the two enantiomers were similar. 12(R)-HETE thus appears to be a more potent neutrophil chemoattractant than 12(S)-HETE in human skin in vivo and may be of potential importance as a mediator of inflammation in man. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Administration, Cutaneous; Chemotaxis, Leukocyte; Erythema; Humans; Hydroxyeicosatetraenoic Acids; Leukocyte Count; Leukocytes, Mononuclear; Neutrophils; Regional Blood Flow; Skin; Stereoisomerism | 1989 |
Eicosanoids in skin UV inflammation--lack of leukotriene B4 elevation in UVB-induced dermatitis.
Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Adult; Eicosanoic Acids; Erythema; Female; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Leukotriene B4; Male; Photosensitivity Disorders; Skin; Ultraviolet Rays | 1986 |