11-octadecenoic-acid has been researched along with Neoplasms* in 4 studies
3 review(s) available for 11-octadecenoic-acid and Neoplasms
Article | Year |
---|---|
Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies.
There are 2 predominant sources of dietary trans fatty acids (TFA) in the food supply, those formed during the industrial partial hydrogenation of vegetable oils (iTFA) and those formed by biohydrogenation in ruminants (rTFA), including vaccenic acid (VA) and the naturally occurring isomer of conjugated linoleic acid, cis-9, trans-11 CLA (c9,t11-CLA). The objective of this review is to evaluate the evidence base from epidemiological and clinical studies to determine whether intake of rTFA isomers, specifically VA and c9,t11-CLA, differentially affects risk of cardiovascular disease (CVD) and cancer compared with iTFA. In addition, animal and cell culture studies are reviewed to explore potential pro- and antiatherogenic mechanisms of VA and c9,t11-CLA. Some epidemiological studies suggest that a positive association with coronary heart disease risk exists between only iTFA isomers and not rTFA isomers. Small clinical studies have been conducted to establish cause-and-effect relationships between these different sources of TFA and biomarkers or risk factors of CVD with inconclusive results. The lack of detection of treatment effects reported in some studies may be due to insufficient statistical power. Many studies have used doses of rTFA that are not realistically attainable via diet; thus, further clinical studies are warranted. Associations between iTFA intake and cancer have been inconsistent, and associations between rTFA intake and cancer have not been well studied. Clinical studies have not been conducted investigating the cause-and-effect relationship between iTFA and rTFA intake and risk for cancers. Further research is needed to determine the health effects of VA and c9,t11-CLA in humans. Topics: Animals; Cardiovascular Diseases; Dairy Products; Humans; Hydrogenation; Linoleic Acids, Conjugated; Meat; Neoplasms; Oleic Acids; Risk Factors; Ruminants; Trans Fatty Acids | 2011 |
Human health benefits of vaccenic acid.
The health risks associated with consumption of diets high in trans fats from industrially produced hydrogenated fats are well documented. However, trans fatty acids are not a homogeneous group of molecules, and less is known about the health effects of consuming diets containing vaccenic acid (VA), a positional and geometric isomer of oleic acid, the predominant trans isomer in ruminant fats. The presence of VA in industrial trans fats has raised the question of whether VA produces the same adverse health effects as industrially produced trans fats. VA is also the major trans fat in ruminant fats, and questions have arisen as to whether consuming this trans fat has the same effects on health risk. The purpose of this paper is to critically review the published studies in humans, animals, and cell lines. Epidemiological, but not rodent, studies suggest that VA intake or serum concentrations may be associated with increased cancer risk. However, epidemiological, clinical, and rodent studies to date have not demonstrated a relationship with heart or cardiovascular disease, insulin resistance, or inflammation. VA is the only known dietary precursor of c9,t11 conjugated linoleic acid (CLA), but recent data suggest that consumption of this trans fat may impart health benefits beyond those associated with CLA. Topics: Cardiovascular Diseases; Diet; Heart Diseases; Humans; Neoplasms; Oleic Acids | 2009 |
Might analysis, synthesis and metabolism of CLA contribute to explain the biological effects of CLA?
Conjugated Linoleic Acids (CLA) are of great interest for analysts since techniques have been developed to determine the dietary occurrence of CLA with a good accuracy. CLA is found in animal products from ruminant sources as the result of biohydrogenation of polyunsaturated fatty acids in the rumen and as the consequence of the delta-9 desaturation of vaccenic acid in animal tissues. CLA can also be obtained in the laboratory by isomerisation of linoleic acid or by total chemical synthesis. While the "natural" isomer is rumenic acid (9c,11t-18:2), synthetic mixtures contain mainly two isomers: the 9c,11t- and the 10t,12c-18:2. Although CLA have been shown to be metabolized into desaturated and chain elongated products, it remains unclear whether these so-formed conjugated metabolites may be involved in the effects of CLA on fatty acid metabolism. Experiments carried out on animal models with CLA have shown different health benefits: anticarcinogenic, antiatherosclerotic effects, modulation of body composition , the "natural" CLA (9c,11t-18:2) being closely related to the protection against cancer and the 10t,12c-18:2 to the reduction of the fat mass. Nevertheless, recent findings have suggested adverse effects in mice. Most of the studies carried out on humans concern the influence of CLA on body composition and its possible inverse association with cancer. Since the results are still controversial and since very few data dealing with the safety of using CLA in long term feeding studies have so far been published, further works are warranted to consider the benefits of CLA for humans. Topics: Animals; Arteriosclerosis; Body Composition; Disease Models, Animal; Humans; Linoleic Acid; Linoleic Acids, Conjugated; Neoplasms; Oleic Acids; Trans Fatty Acids | 2003 |
1 other study(ies) available for 11-octadecenoic-acid and Neoplasms
Article | Year |
---|---|
Trans-vaccenic acid reprograms CD8
Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8 Topics: Animals; Cattle; CD8-Positive T-Lymphocytes; Cyclic AMP; Cyclic AMP Response Element-Binding Protein; Cyclic AMP-Dependent Protein Kinases; Dairy Products; Fatty Acids, Volatile; Humans; Mice; Milk; Neoplasms; Oleic Acids; Red Meat; Sheep | 2023 |