11-dehydrocorticosterone has been researched along with Obesity* in 2 studies
2 other study(ies) available for 11-dehydrocorticosterone and Obesity
Article | Year |
---|---|
Obesity Disrupts the Rhythmic Profiles of Maternal and Fetal Progesterone in Rat Pregnancy.
Maternal obesity increases the risk of abnormal fetal growth, but the underlying mechanisms remain unclear. Because steroid hormones regulate fetal growth, and both pregnancy and obesity markedly alter circadian biology, we hypothesized that maternal obesity disrupts the normal rhythmic profiles of steroid hormones in rat pregnancy. Obesity was established by cafeteria (CAF) feeding for 8 wk prior to mating and throughout pregnancy. Control (CON) animals had ad libitum access to chow. Daily profiles of plasma corticosterone, 11-dehydrocorticosterone, progesterone, and testosterone were measured at Days 15 and 21 of gestation (term = 23 days) in maternal (both days) and fetal (Day 21) plasma. CAF mothers exhibited increased adiposity relative to CON and showed fetal and placental growth restriction. There was no change, however, in total fetal or placental mass due to slightly larger litter sizes in CAF. Nocturnal declines in progesterone were observed in maternal (39% lower) and fetal (45% lower) plasma in CON animals, but these were absent in CAF animals. CAF mothers were hyperlipidemic at both days of gestation, but this effect was isolated to the dark period at Day 21. CAF maternal testosterone was slightly lower at Day 15 (8%) but increased above CON by Day 21 (16%). Despite elevated maternal testosterone, male fetal testosterone was suppressed by obesity on Day 21. Neither maternal nor fetal glucocorticoid profiles were affected by obesity. In conclusion, obesity disrupts rhythmic profiles of maternal and fetal progesterone, preventing the normal nocturnal decline. Obesity subtly changed testosterone profiles but did not alter maternal and fetal glucocorticoids. Topics: Animals; Circadian Rhythm; Corticosterone; Female; Obesity; Pregnancy; Pregnancy, Animal; Progesterone; Rats; Testosterone | 2016 |
Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats.
The role of glucocorticoids in obesity is poorly understood. Observations in obese men suggest enhanced inactivation of cortisol by 5alpha-reductase and altered reactivation of cortisone to cortisol by 11betahydroxysteroid dehydrogenase type 1 (11betaHSD1). These changes in glucocorticoid metabolism may influence corticosteroid receptor activation and feedback regulation of the hypothalamic-pituitary-adrenal axis (HPA). We have compared corticosterone metabolism in vivo and in vitro in male obese and lean Zucker rats, aged 9 weeks (n = 8/group). Steroids were measured in 72-h urine and 0900 h trunk blood samples. 5alpha-Reductase type 1 and 11betaHSD activities were assessed in dissected tissues. Obese animals were hypercorticosteronemic and excreted more total corticosterone metabolites (2264+/-623 vs. 388+/-144 ng/72 h; P = 0.003), with a greater proportion being 5alpha-reduced or 11-oxidized. 11-Dehydrocorticosterone was also elevated in plasma (73+/-9 vs. 18+/-2 nM; P = 0.001) and urine (408+/-111 vs. <28 ng/72 h; P = 0.01). In liver of obese rats, 5alpha-reductase type 1 activity was greater (20.6+/-2.7% vs. 14.1+/-1.5%; P<0.04), but 11betaHSD1 activity (maximum velocity, 3.43+/-0.56 vs. 6.57+/-1.13 nmol/min/mg protein; P = 0.01) and messenger RNA levels (0.56+/-0.08 vs. 1.03+/-0.15; P = 0.02) were lower. In contrast, in obese rats, 11betaHSD1 activity was not different in skeletal muscle and sc fat and was higher in omental fat(36.4+/-6.2 vs. 19.2+/-6.6; P = 0.01), whereas 11betaHSD2 activity was higher in kidney (16.7+/-0.6% vs. 11.3+/-1.5%; p = 0.01). We conclude that greater inactivation of glucocorticoids by 5alpha-reductase in liver and 11betaHSD2 in kidney combined with impaired reactivation of glucocorticoids by 11betaHSD1 in liver may increase the MCR of glucocorticoids and decrease local glucocorticoid concentrations at these sites. By contrast, enhanced 11betaHSD1 in omental adipose tissue may increase local glucocorticoid receptor activation and promote obesity. Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; 3-Oxo-5-alpha-Steroid 4-Dehydrogenase; Adrenal Cortex Hormones; Animals; Corticosterone; Humans; Hydroxysteroid Dehydrogenases; Liver; Male; Microsomes, Liver; Obesity; Organ Specificity; Rats; Rats, Zucker; Thinness | 2000 |