11-cis-retinal and Reperfusion-Injury

11-cis-retinal has been researched along with Reperfusion-Injury* in 4 studies

Other Studies

4 other study(ies) available for 11-cis-retinal and Reperfusion-Injury

ArticleYear
Protective effects on the retina after ranibizumab treatment in an ischemia model.
    PloS one, 2017, Volume: 12, Issue:8

    Retinal ischemia is common in eye disorders, like diabetic retinopathy or retinal vascular occlusion. The goal of this study was to evaluate the potential protective effects of an intravitreally injected vascular endothelial growth factor (VEGF) inhibitor (ranibizumab) on retinal cells in an ischemia animal model via immunohistochemistry (IF) and quantitative real-time PCR (PCR). A positive binding of ranibizumab to rat VEGF-A was confirmed via dot blot. One eye underwent ischemia and a subgroup received ranibizumab. A significant VEGF increase was detected in aqueous humor of ischemic eyes (p = 0.032), whereas VEGF levels were low in ranibizumab eyes (p = 0.99). Ischemic retinas showed a significantly lower retinal ganglion cell number (RGC; IF Brn-3a: p<0.001, IF RBPMS: p<0.001; PCR: p = 0.002). The ranibizumab group displayed fewer RGCs (IF Brn-3a: 0.3, IF RBPMS: p<0.001; PCR: p = 0.007), but more than the ischemia group (IF Brn-3a: p = 0.04, IF RBPMS: p = 0.03). Photoreceptor area was decreased after ischemia (IF: p = 0.049; PCR: p = 0.511), while the ranibizumab group (IF: p = 0.947; PCR: p = 0.122) was comparable to controls. In the ischemia (p<0.001) and ranibizumab group (p<0.001) a decrease of ChAT+ amacrine cells was found, which was less prominent in the ranibizumab group. VEGF-receptor 2 (VEGF-R2; IF: p<0.001; PCR: p = 0.021) and macroglia (GFAP; IF: p<0.001; PCR: p<0.001) activation was present in ischemic retinas. The activation was weaker in ranibizumab retinas (VEGF-R2: IF: p = 0.1; PCR: p = 0.03; GFAP: IF: p = 0.1; PCR: p = 0.015). An increase in the number of total (IF: p = 0.003; PCR: p = 0.023) and activated microglia (IF: p<0.001; PCR: p = 0.009) was detected after ischemia. These levels were higher in the ranibizumab group (Iba1: IF: p<0.001; PCR: p = 0.018; CD68: IF: p<0.001; PCR: p = 0.004). Our findings demonstrate that photoreceptors and RGCs are protected by ranibizumab treatment. Only amacrine cells cannot be rescued. They seem to be particularly sensitive to ischemic damage and need maybe an earlier intervention.

    Topics: Amacrine Cells; Animals; Aqueous Humor; Calcium-Binding Proteins; Cell Count; Cholinergic Neurons; Disease Models, Animal; Glial Fibrillary Acidic Protein; Humans; Ischemia; Mice; Microfilament Proteins; Microglia; Photoreceptor Cells, Vertebrate; Protective Agents; Protein Binding; Ranibizumab; Rats; Reperfusion Injury; Retina; Retinal Ganglion Cells; Rhodopsin; RNA, Messenger; Synapses; Vascular Endothelial Growth Factor A

2017
Calpain, not caspase, is the causative protease for hypoxic damage in cultured monkey retinal cells.
    Investigative ophthalmology & visual science, 2011, Sep-01, Volume: 52, Issue:10

    Cell death occurring in human retina during AMD, high IOP, and diabetic retinopathy could be caused by activation of calpain or caspase proteolytic enzymes. The purpose of the present study was to determine whether calpains and/or caspase-3 were involved in cell death during retinal hypoxia in a monkey model.. Dissociated monkey retinal cells were cultured for two weeks and subjected to 24-hour hypoxia/24-hour reoxygenation. TUNEL staining and immunostaining for Müller and photoreceptor markers were used to detect which retinal cell types were damaged.. Culturing dissociated monkey retina cells for two weeks resulted in proliferation of Müller cells and maintenance of some rod and cone photoreceptor cells, as identified by vimentin, recoverin, and rhodopsin immunocytochemical staining. Hypoxia/reoxygenation increased the number of cells staining positive for TUNEL. Immunoblotting showed that the calpain-specific 145 kDa α-spectrin breakdown product (SBDP) increased in hypoxic cells, but no caspase-specific 120 kDa α-spectrin breakdown product was detected. TUNEL staining and proteolysis were significantly reduced in the retinal cells treated with 10 and 100 μM calpain inhibitor SNJ-1945. Caspase inhibitor, z-VAD, did not inhibit cell damage from hypoxia/reoxygenation. Intact pro-caspase-3 was in fact cleaved by activated calpain during hypoxia/reoxygenation to pre 29 kDa caspase-3 and 24 kDa inactive fragments. No 17 and 12 kDa fragments, which form the active caspase-3 hetero-dimer, were detected. Calpain-induced cleavage of caspase was inhibited by SNJ-1945.. Calpain, not caspase-3, was involved in hypoxic damage in cultured monkey retinal cells.

    Topics: Animals; Apoptosis; Biomarkers; Calpain; Carbamates; Caspase 3; Caspase Inhibitors; Cell Count; Cell Proliferation; Cells, Cultured; Fluorescent Antibody Technique, Indirect; Hypoxia; Immunoblotting; In Situ Nick-End Labeling; Macaca mulatta; Neuroglia; Oligopeptides; Photoreceptor Cells, Vertebrate; Recoverin; Reperfusion Injury; Rhodopsin; Spectrin; Vimentin

2011
Effects of intraocular injection of a low concentration of zinc on the rat retina.
    Neuropharmacology, 2003, Volume: 45, Issue:5

    The main aim of this study was to investigate whether intraocular injection of low concentrations of zinc (no greater than 10 microM) aid the survival of ganglion cells in the rat retina after excitotoxic (NMDA) and ischemia/reperfusion injuries. We also determined whether low amounts of zinc cause any detectable retinal toxicity. Intraocular injection of NMDA caused substantial reductions in the mRNA levels of the ganglion cell-specific markers Thy-1 and neurofilament light (NF-L). Co-injection of 0.1 or 1 nmol zinc neither diminished nor exacerbated the effect of NMDA on the levels of these mRNAs. Likewise, ischemia/reperfusion caused significant decreases in the levels of Thy-1 and NF-L mRNAs and in the b-wave amplitude of the electroretinogram. These effects were not counteracted by injection of zinc. Intraocular injection of NMDA caused marked toxicological effects in retinal glial cells, including upregulations of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glial fibrial acidic protein (GFAP), basic fibroblast growth factor (FGF-2) and ciliary neurotrophic factor (CNTF). Interestingly, injection of 1 nmol zinc caused no changes in the levels of COX-2 and iNOS, yet produced similar, although quantitatively less pronounced, changes in FGF-2, GFAP and CNTF. The upregulations of FGF-2 and CNTF suggest that increasing zinc intake may benefit injured retinal neurons. However, this was not found to be the case in the present studies, perhaps due to the acute nature of the injury paradigms utilised.

    Topics: Animals; Astringents; Cell Death; Cell Survival; Ciliary Neurotrophic Factor; Cyclooxygenase 2; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Interactions; Electroretinography; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Eye; Fibroblast Growth Factor 2; Glial Fibrillary Acidic Protein; Immunoblotting; Immunohistochemistry; Isoenzymes; N-Methylaspartate; Neuroglia; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Wistar; Reperfusion Injury; Retina; Retinal Ganglion Cells; Reverse Transcriptase Polymerase Chain Reaction; Rhodopsin; RNA, Messenger; Thy-1 Antigens; Time Factors; Zinc Sulfate

2003
Alpha-lipoic acid protects the retina against ischemia-reperfusion.
    Neuropharmacology, 2002, Volume: 43, Issue:6

    The aim of this study was to examine whether the antioxidant alpha-lipoic acid protects retinal neurons from ischemia-reperfusion injury. Rats were injected intraperitoneally with either vehicle or alpha-lipoic acid (100 mg/kg) once daily for 11 days. On the third day, ischemia was delivered to the rat retina by raising the intraocular pressure above systolic blood pressure for 45 min. The electroretinogram was measured prior to ischemia and 5 days after reperfusion. Rats were killed 5 or 8 days after reperfusion and the retinas were processed for immunohistochemistry and for determination of mRNA levels by RT-PCR. Ischemia-reperfusion caused a significant reduction of the a- and b-wave amplitudes of the electroretinogram, a decrease in nitric oxide synthase and Thy-1 immunoreactivities, a decrease of retinal ganglion cell-specific mRNAs and an increase in bFGF and CNTF mRNA levels. All of these changes were clearly counteracted by alpha-lipoic acid. Moreover, in mixed rat retinal cultures, alpha-lipoic acid partially counteracted the loss of GABA-immunoreactive neurons induced by anoxia. The results of the study demonstrate that alpha-lipoic acid provides protection to the retina as a whole, and to ganglion cells in particular, from ischemia-reperfusion injuries. alpha-Lipoic acid also displayed negligible affinity for voltage-dependent sodium and calcium channels.

    Topics: Anesthetics, Local; Animals; Antioxidants; Binding, Competitive; Brain-Derived Neurotrophic Factor; Calcium; Calcium Channel Blockers; Cells, Cultured; Ciliary Neurotrophic Factor; Diltiazem; Dizocilpine Maleate; DNA Primers; Dose-Response Relationship, Drug; Drug Interactions; Electroretinography; Fibroblast Growth Factors; Glial Fibrillary Acidic Protein; Glyceraldehyde-3-Phosphate Dehydrogenases; N-Methylaspartate; Nifedipine; Rats; Reperfusion Injury; Retinal Diseases; Reverse Transcriptase Polymerase Chain Reaction; Rhodopsin; RNA, Messenger; Sodium; Tetrodotoxin; Thioctic Acid; Thy-1 Antigens; Veratridine

2002