11-cis-retinal has been researched along with Parkinson-Disease* in 3 studies
1 review(s) available for 11-cis-retinal and Parkinson-Disease
Article | Year |
---|---|
Protein misfolding and retinal degeneration.
The retina is a highly complex and specialized organ that performs preliminary analysis of visual information. Composed of highly metabolically active tissue, the retina requires a precise and well-balanced means of maintaining its functional activity during extended periods of time. Maintenance and regulation of a vast array of different structural and functional proteins is required for normal function of the retina. This process is referred to as protein homeostasis and involves a variety of activities, including protein synthesis, folding, transport, degradation, elimination, and recycling. Deregulation of any of these activities can lead to malfunctioning of the retina, from subtle subclinical signs to severe retinal degenerative diseases leading to blindness. Examples of retinal degenerative diseases caused by disruption of protein homeostasis include retinitis pigmentosa and Stargardt's disease. A detailed discussion of the role of disruption in protein homeostasis in these and other retinal diseases is presented, followed by examples of some existing and potential treatments. Topics: Alzheimer Disease; Eye Proteins; Homeostasis; Humans; Parkinson Disease; Protein Folding; Retinal Degeneration; Rhodopsin | 2011 |
2 other study(ies) available for 11-cis-retinal and Parkinson-Disease
Article | Year |
---|---|
Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson's disease.
In Parkinson's disease (PD), the loss of midbrain dopaminergic cells results in severe locomotor deficits, such as gait freezing and akinesia. Growing evidence indicates that these deficits can be attributed to the decreased activity in the mesencephalic locomotor region (MLR), a brainstem region controlling locomotion. Clinicians are exploring the deep brain stimulation of the MLR as a treatment option to improve locomotor function. The results are variable, from modest to promising. However, within the MLR, clinicians have targeted the pedunculopontine nucleus exclusively, while leaving the cuneiform nucleus unexplored. To our knowledge, the effects of cuneiform nucleus stimulation have never been determined in parkinsonian conditions in any animal model. Here, we addressed this issue in a mouse model of PD, based on the bilateral striatal injection of 6-hydroxydopamine, which damaged the nigrostriatal pathway and decreased locomotor activity. We show that selective optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus in mice expressing channelrhodopsin in a Cre-dependent manner in Vglut2-positive neurons (Vglut2-ChR2-EYFP mice) increased the number of locomotor initiations, increased the time spent in locomotion, and controlled locomotor speed. Using deep learning-based movement analysis, we found that the limb kinematics of optogenetic-evoked locomotion in pathological conditions were largely similar to those recorded in intact animals. Our work identifies the glutamatergic neurons of the cuneiform nucleus as a potentially clinically relevant target to improve locomotor activity in parkinsonian conditions. Our study should open avenues to develop the targeted stimulation of these neurons using deep brain stimulation, pharmacotherapy, or optogenetics. Topics: Animals; Biomechanical Phenomena; Corpus Striatum; Disease Models, Animal; Glutamic Acid; Light; Locomotion; Mice; Mice, Transgenic; Midbrain Reticular Formation; Neurons; Optogenetics; Oxidopamine; Parkinson Disease; Rhodopsin | 2021 |
Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF.
Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells. Importantly, upregulation of bFGF levels, by specific light activation of endogenous astrocytes in the SN, enhances the DA differentiation of transplanted stem cells and promotes brain repair in a mouse model of Parkinson's disease (PD). Our study indicates that astrocyte-derived bFGF is required for regulation of DA differentiation of the stem cells and may provide a strategy targeting astrocytes for treatment of PD. Topics: Animals; Astrocytes; Cell Differentiation; Cell- and Tissue-Based Therapy; Cells, Cultured; Disease Models, Animal; Dopaminergic Neurons; Embryonic Stem Cells; Fibroblast Growth Factor 2; Gene Expression Regulation; Humans; Light; Mice; Neural Stem Cells; Neurogenesis; Parkinson Disease; Protein Engineering; Recombinant Proteins; Rhodopsin; Stem Cell Transplantation; Substantia Nigra | 2014 |