11-12-epoxy-5-8-14-eicosatrienoic-acid and Kidney-Diseases

11-12-epoxy-5-8-14-eicosatrienoic-acid has been researched along with Kidney-Diseases* in 4 studies

Reviews

1 review(s) available for 11-12-epoxy-5-8-14-eicosatrienoic-acid and Kidney-Diseases

ArticleYear
Epoxyeicosatrienoic acids, hypertension, and kidney injury.
    Hypertension (Dallas, Tex. : 1979), 2015, Volume: 65, Issue:3

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Antihypertensive Agents; Disease Models, Animal; Disease Progression; Endothelium, Vascular; Fatty Acids; Humans; Hypertension; Kidney Diseases; Mice; Rats

2015

Other Studies

3 other study(ies) available for 11-12-epoxy-5-8-14-eicosatrienoic-acid and Kidney-Diseases

ArticleYear
Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture.
    Hypertension (Dallas, Tex. : 1979), 2020, Volume: 76, Issue:1

    Epoxyeicosatrienoic acids (EETs) are epoxy fatty acids that have biological actions that are essential for maintaining water and electrolyte homeostasis. An inability to increase EETs in response to a high-salt diet results in salt-sensitive hypertension. Vasodilation, inhibition of epithelial sodium channel, and inhibition of inflammation are the major EET actions that are beneficial to the heart, resistance arteries, and kidneys. Genetic and pharmacological means to elevate EETs demonstrated antihypertensive, anti-inflammatory, and organ protective actions. Therapeutic approaches to increase EETs were then developed for cardiovascular diseases. sEH (soluble epoxide hydrolase) inhibitors were developed and progressed to clinical trials for hypertension, diabetes mellitus, and other diseases. EET analogs were another therapeutic approach taken and these drugs are entering the early phases of clinical development. Even with the promise for these therapeutic approaches, there are still several challenges, unexplored areas, and opportunities for epoxy fatty acids.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Cardiovascular Diseases; Cytochrome P-450 Enzyme System; Disease Models, Animal; Epoxide Hydrolases; Forecasting; Humans; Hypertension; Kidney; Kidney Diseases; Mice; Natriuresis; Potassium; Rats; Rats, Inbred Dahl; Sodium Chloride; Sodium Chloride, Dietary; Vasodilation; Water-Electrolyte Balance; Water-Electrolyte Imbalance

2020
Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2013, Volume: 27, Issue:8

    Nephrotoxicity severely limits the use of the anticancer drug cisplatin. Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress contribute to cisplatin-induced nephrotoxicity. We developed novel orally active epoxyeicosatrienoic acid (EET) analogs and investigated their prophylactic effect in cisplatin-induced nephrotoxicity in rats. Cisplatin-induced nephrotoxicity was manifested by increases in blood urea nitrogen, plasma creatinine, urinary N-acetyl-β-(d)-glucosaminidase activity, kidney injury molecule 1, and histopathology. EET analogs (10 mg/kg/d) attenuated cisplatin-induced nephrotoxicity by reducing these renal injury markers by 40-80% along with a 50-70% reduction in renal tubular cast formation. This attenuated renal injury is associated with reduced oxidative stress, inflammation, and ER stress evident from reduction in related biomarkers and in the renal expression of genes involved in these pathways. Moreover, we demonstrated that the attenuated nephrotoxicity correlated with decreased apoptosis that is associated with 50-90% reduction in Bcl-2 protein family mediated proapoptotic signaling, reduced renal caspase-12 expression, and a 50% reduction in renal caspase-3 activity. We further demonstrated in vitro that the protective activity of EET analogs does not compromise the anticancer effects of cisplatin. Collectively, our data provide evidence that EET analogs attenuate cisplatin-induced nephrotoxicity by reducing oxidative stress, inflammation, ER stress, and apoptosis without affecting the chemotherapeutic effects of cisplatin.

    Topics: 8,11,14-Eicosatrienoic Acid; Administration, Oral; Animals; Apoptosis; Blood Urea Nitrogen; Cell Line, Tumor; Cell Survival; Cisplatin; Creatinine; Cross-Linking Reagents; Dose-Response Relationship, Drug; Endoplasmic Reticulum Stress; Gene Expression; HEK293 Cells; HeLa Cells; Humans; Kidney; Kidney Diseases; Male; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Inbred WKY; Reverse Transcriptase Polymerase Chain Reaction; Superoxide Dismutase; Superoxide Dismutase-1; Vasodilator Agents

2013
A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury.
    The American journal of pathology, 2004, Volume: 164, Issue:2

    Cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolites are involved in the regulation of renal vascular tone and salt excretion. The epoxygenation product 11,12-epoxyeicosatrienoic acid (EET) is anti-inflammatory and inhibits nuclear factor-kappa B activation. We tested the hypothesis that the peroxisome proliferator-activated receptor-alpha-activator fenofibrate (Feno) induces CYP isoforms, AA hydroxylation, and epoxygenation activity, and protects against inflammatory organ damage. Double-transgenic rats (dTGRs) overexpressing human renin and angiotensinogen genes were treated with Feno. Feno normalized blood pressure, albuminuria, reduced nuclear factor-kappa B activity, and renal leukocyte infiltration. Renal epoxygenase activity was lower in dTGRs compared to nontransgenic rats. Feno strongly induced renal CYP2C23 protein and AA-epoxygenase activity under pathological and nonpathological conditions. In both cases, CYP2C23 was the major isoform responsible for 11,12-EET formation. Moreover, we describe a novel CYP2C23-dependent pathway leading to hydroxy-EETs (HEETs), which may serve as endogenous peroxisome proliferator-activated receptor-alpha activators. The capacity to produce HEETs via CYP2C23-dependent epoxygenation of 20-HETE and CYP4A-dependent hydroxylation of EETs was reduced in dTGR kidneys and induced by Feno. These results demonstrate that Feno protects against angiotensin II-induced renal damage and acts as inducer of CYP2C23-mediated epoxygenase activities. We propose that CYP-dependent EET/HEET production may serve as an anti-inflammatory control mechanism.

    Topics: 8,11,14-Eicosatrienoic Acid; Angiotensin II; Angiotensinogen; Animals; Animals, Genetically Modified; Arachidonic Acid; Blotting, Western; Chromatography, Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Fenofibrate; Humans; Hypertension; Hypolipidemic Agents; Immunohistochemistry; Kidney; Kidney Diseases; Mass Spectrometry; NF-kappa B; Polymerase Chain Reaction; Rats; Receptors, Cytoplasmic and Nuclear; Renin; Transcription Factors; Vasoconstrictor Agents

2004