11-12-epoxy-5-8-14-eicosatrienoic-acid and Body-Weight

11-12-epoxy-5-8-14-eicosatrienoic-acid has been researched along with Body-Weight* in 2 studies

Other Studies

2 other study(ies) available for 11-12-epoxy-5-8-14-eicosatrienoic-acid and Body-Weight

ArticleYear
Epoxyeicosatrienoic acid agonist rescues the metabolic syndrome phenotype of HO-2-null mice.
    The Journal of pharmacology and experimental therapeutics, 2009, Volume: 331, Issue:3

    Heme oxygenase (HO) and cytochrome P450 (P450)-derived epoxyeicosatrienoic acids (EETs) participate in vascular protection, and recent studies suggest these two systems are functionally linked. We examined the consequences of HO deficiency on P450-derived EETs with regard to body weight, adiposity, insulin resistance, blood pressure, and vascular function in HO-2-null mice. The HO-2-null mice were obese, displayed insulin resistance, and had high blood pressure. HO-2 deficiency was associated with decreases in cyp2c expression, EET levels, HO-1 expression, and HO activity and with an increase in superoxide production and an impairment in the relaxing response to acetylcholine. In addition, HO-2-null mice exhibited increases in serum levels of tumor necrosis factor (TNF)-alpha and macrophage chemoattractant protein (MCP)-1 and a decrease in serum adiponectin levels. Treatment of HO-2-null mice with a dual-activity EET agonist/soluble epoxide hydrolase inhibitor increased renal and vascular EET levels and HO-1 expression, lowered blood pressure, prevented body weight gain, increased insulin sensitivity, reduced subcutaneous and visceral fat, and decreased serum TNF-alpha and MCP-1, while increasing adiponectin and restoring the relaxing responses to acetylcholine. The decrease in cyp2c expression and EETs levels in HO-2-null mice underscores the importance of the HO system in the regulation of epoxygenase levels and suggests that protection against obesity-induced cardiovascular complications requires interplay between these two systems. A deficiency in one of these protective systems may contribute to the adverse manifestations associated with the clinical progression of the metabolic syndrome.

    Topics: 8,11,14-Eicosatrienoic Acid; Adiponectin; Adipose Tissue; Animals; Aorta; Blood Glucose; Blood Pressure; Blotting, Western; Body Weight; Chemokine CCL2; Cytochrome P-450 Enzyme System; Heme Oxygenase (Decyclizing); Heme Oxygenase-1; Kidney Cortex; Membrane Proteins; Metabolic Syndrome; Mice; Mice, Knockout; Phenotype; Superoxides; Tumor Necrosis Factor-alpha; Vasodilation

2009
Increased epoxyeicosatrienoic acid formation in the rat kidney during liver cirrhosis.
    Journal of the American Society of Nephrology : JASN, 2003, Volume: 14, Issue:7

    Vascular complications during liver cirrhosis are often severe, particularly in the kidney. These complications are the result of complex and poorly understood interactions between the injured liver and other organs such as the lungs, heart, and kidney. The purpose of this study was to investigate the alterations to renal hemodynamics during cirrhosis, focusing on the actions of epoxyeicosatrienoic acids (EET), known to be potent regulators of renal hemodynamics. Cirrhosis was induced in rats by common bile duct ligation (CBDL), and they were compared with sham rats. Experiments were conducted 4 wk after either the sham or CBDL surgery. Vasoreactivity was assessed in isolated perfused kidneys. cPLA(2) expression and cytochrome P450 (CYP450) expression were measured using Western blot. cPLA(2) enzymatic activity was measured by radioenzymatic assay. EET production was measured using rpHPLC analysis. The major findings were that kidneys from CBDL rats had significantly greater acetylcholine-induced vasodilation that was partially blocked by nitric oxide (NO) and prostaglandin inhibition and fully blocked by the combined inhibition of NO, prostaglandins, and CYP450 metabolites. Expression and activity of cPLA(2) in CBDL kidneys was increased, providing arachidonic acid substrate to the CYP450 enzymes. Finally, expression and activity of CYP450 enzymes was elevated in CBDL kidneys, resulting in significantly greater production of the vasodilating 11,12-EET and 14,15-EET. While it is well documented that renal vasoconstriction leading to impaired renal function occurs during cirrhosis, our data clearly demonstrate that endogenous production of EET is increased in cirrhotic kidneys. This may be a homeostatic response to preserve renal perfusion.

    Topics: 8,11,14-Eicosatrienoic Acid; Acetylcholine; Animals; Arachidonic Acid; Bile Ducts; Blotting, Western; Body Weight; Cell Division; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Hemodynamics; Kidney; Liver Cirrhosis; Nitric Oxide; Perfusion; Phospholipases A; Protein Isoforms; Rats; Time Factors

2003