103d5r has been researched along with Glioblastoma* in 1 studies
1 other study(ies) available for 103d5r and Glioblastoma
Article | Year |
---|---|
Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway.
Hypoxia-inducible factor 1 (HIF-1) is the central mediator of cellular responses to low oxygen and has recently become an important therapeutic target for solid tumor therapy. Inhibition of HIF-1 is expected to result in the attenuation of hypoxia-inducible genes, which are vital to many aspects of tumor biology, including adaptative responses for survival under anaerobic conditions. To identify small molecules inhibiting the HIF-1 pathway, we did a biological screen on a 10,000-membered natural product-like combinatorial library. The compounds of the library, which share a 2,2-dimethylbenzopyran structural motif, were tested for their ability to inhibit the hypoxic activation of an alkaline phosphatase reporter gene under the control of hypoxia-responsive elements in human glioma cells. This effort led to the discovery of 103D5R, a novel small-molecule inhibitor of HIF-1alpha. 103D5R markedly decreased HIF-1alpha protein levels induced by hypoxia or cobaltous ions in a dose- and time-dependent manner, whereas minimally affecting global cellular protein expression levels, including that of control proteins such as HIF-1beta, IkappaBalpha, and beta-actin. The inhibitory activity of 103D5R against HIF-1alpha was clearly shown under normoxia and hypoxia in cells derived from different cancer types, including glioma, prostate, and breast cancers. This inhibition prevented the activation of HIF-1 target genes under hypoxia such as vascular endothelial growth factor (VEGF) and glucose transporter-1 (Glut-1). Investigations into the molecular mechanism showed that 103D5R strongly reduced HIF-1alpha protein synthesis, whereas HIF-1alpha mRNA levels and HIF-1alpha degradation were not affected. 103D5R inhibited the phosphorylation of Akt, Erk1/2, and stress-activated protein kinase/c-jun-NH(2)-kinase, without changing the total levels of these proteins. Further studies on the mechanism of action of 103D5R will likely provide new insights into its validity/applicability for the pharmacologic targeting of HIF-1alpha for therapeutic purposes. Topics: Benzopyrans; Biological Factors; Breast Neoplasms; Cell Line, Tumor; Combinatorial Chemistry Techniques; DNA-Binding Proteins; Dose-Response Relationship, Drug; Glioblastoma; Humans; Hypoxia-Inducible Factor 1; Hypoxia-Inducible Factor 1, alpha Subunit; Male; Nuclear Proteins; Prostatic Neoplasms; RNA, Messenger; Transcription Factors; Transcription, Genetic; Vascular Endothelial Growth Factor A | 2005 |