10-nitro-oleic-acid has been researched along with Aortic-Diseases* in 2 studies
2 other study(ies) available for 10-nitro-oleic-acid and Aortic-Diseases
Article | Year |
---|---|
Nitro-oleic acid reduces thoracic aortic aneurysm progression in a mouse model of Marfan syndrome.
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene. It is associated with formation of thoracic aortic aneurysms that can potentially be a life-threatening condition due to aortic rupture or dissection. Excessive non-canonical transforming growth factor beta signalling, mediated by activation of extracellular signal-regulated kinases 1/2 (ERK1/2), as well as inducible nitric oxide synthase (NOS2)-dependent nitric oxide production, have been identified to drive aortic pathology in MFS through induction of elastin fragmentation and smooth muscle cell apoptosis. Despite promising results in animal studies, specific pharmacological interventions approved for clinical use in patients with MFS-related aortic disease are rare. Nitro-oleic acid (NO2-OA) is an endogenously generated signalling modulator, which is available as an oral compound and has been shown to inhibit ERK1/2 activation and NOS2 expression in different disease models, thereby exerting promising therapeutic effects. In this study, we investigated whether NO2-OA decreases aortic dilation in MFS.. Eight-week-old MFS (Fbn1C1041G/+) mice were treated with NO2-OA or vehicle for 4 weeks via subcutaneously implanted osmotic minipumps. Echocardiography indicated progressive ascending aortic dilation and wall stiffening in MFS mice, which was significantly attenuated by NO2-OA treatment. This protective effect was mediated by inhibition of aortic ERK1/2, Smad2 as well as nuclear factor kappa B overactivation and consequent attenuation of elastin fragmentation by matrix metalloproteinase 2, apoptosis, and collagen deposition. Critically, the therapeutic efficacy of NO2-OA in MFS was further emphasized by demonstrating its capability to reduce lethal aortic complications in Fbn1C1041G/+ mice challenged with Angiotensin II.. NO2-OA distinctly attenuates progression of aortic dilation in MFS via modulation of well-established disease-mediating pathways, thereby meriting further investigation into its application as a therapeutic agent for the treatment of this condition. Topics: Animals; Aortic Aneurysm; Aortic Aneurysm, Thoracic; Aortic Diseases; Disease Models, Animal; Elastin; Fibrillin-1; Marfan Syndrome; Matrix Metalloproteinase 2; Mice; Nitro Compounds; Oleic Acids | 2022 |
Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice.
Inflammatory processes and foam cell formation are key determinants in the initiation and progression of atherosclerosis. Electrophilic nitro-fatty acids, byproducts of nitric oxide- and nitrite-dependent redox reactions of unsaturated fatty acids, exhibit antiinflammatory signaling actions in inflammatory and vascular cell model systems. The in vivo action of nitro-fatty acids in chronic inflammatory processes such as atherosclerosis remains to be elucidated.. Herein, we demonstrate that subcutaneously administered 9- and 10-nitro-octadecenoic acid (nitro-oleic acid) potently reduced atherosclerotic lesion formation in apolipoprotein E-deficient mice. Nitro-fatty acids did not modulate serum lipoprotein profiles. Immunostaining and gene expression analyses revealed that nitro-oleic acid attenuated lesion formation by suppressing tissue oxidant generation, inhibiting adhesion molecule expression, and decreasing vessel wall infiltration of inflammatory cells. In addition, nitro-oleic acid reduced foam cell formation by attenuating oxidized low-density lipoprotein-induced phosphorylation of signal transducer and activator of transcription-1, a transcription factor linked to foam cell formation in atherosclerotic plaques. Atherosclerotic lesions of nitro-oleic acid-treated animals also showed an increased content of collagen and alpha-smooth muscle actin, suggesting conferral of higher plaque stability.. These results reveal the antiatherogenic actions of electrophilic nitro-fatty acids in a murine model of atherosclerosis. Topics: Actins; Animals; Anti-Inflammatory Agents; Antioxidants; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Cell Adhesion Molecules; Cells, Cultured; Chemokine CCL2; Collagen; Disease Models, Animal; Dose-Response Relationship, Drug; Foam Cells; Injections, Subcutaneous; Lipoproteins, LDL; Male; Mice; Mice, Knockout; Oleic Acids; Oxidants; Oxidative Stress; Phosphorylation; Signal Transduction; STAT1 Transcription Factor | 2010 |