10-12-octadecadienoic-acid has been researched along with Breast-Neoplasms* in 4 studies
4 other study(ies) available for 10-12-octadecadienoic-acid and Breast-Neoplasms
Article | Year |
---|---|
Conjugated linoleic acid decreases mcf-7 human breast cancer cell growth and insulin-like growth factor-1 receptor levels.
In vitro work suggests that conjugated linoleic acid (CLA) isomers (c9,t11 and t10,c12) are cytotoxic to human breast cancer cells, however the mechanism remains unknown. Using human MCF-7 breast cancer cells, we examined the effects of c9,t11 and t10,c12 CLA compared to oleic acid (OA), linoleic acid (LA), or untreated cells on cell membrane phospholipid composition, cell survival, and the insulin-like growth factor-I (IGF-I) and the downstream insulin receptor substrate-1 (IRS-1). Both CLA isomers were incorporated into membrane phospholipids (p < 0.05). Compared to untreated cells, c9,t11 or t10,c12 CLA significantly reduced the metabolic activity of IGF-I stimulated MCF-7 cells, increased lactate dehydrogenase (LDH) release, and decreased cellular concentrations of the IGF-I receptor (IGF-IR) and insulin receptor substrate-1 (p < 0.05). Incubation with t10,c12 CLA also reduced the levels of phosphorylated IGF-1R. The effects on all of these measures were greater (p < 0.05) for t10,c12 CLA compared to c9,t11 CLA. There were few differences between LA-treated and c9,t11 CLA-treated cells, whereas cellular metabolic activity, LDH release, and IGF-IR concentrations differed between t10,c12 CLA-treated and LA-treated cells (p < 0.05). OA stimulated growth compared to the untreated condition (p < 0.05). In summary, this study demonstrated that the t10,c12 CLA isomer inhibits growth of MCF-7 cells and suggested that this may be mediated through incorporation into cellular phospholipids and interference with the function of IGF-I and related signaling proteins. Topics: Breast Neoplasms; Cell Line, Tumor; Cell Membrane; Cell Proliferation; Female; Humans; Insulin Receptor Substrate Proteins; Insulin-Like Growth Factor I; Linoleic Acids, Conjugated; Phospholipids; Receptor, IGF Type 1 | 2009 |
[Effect of conjugated linoleic acid isomers on proliferation of mammary cancer cells].
Conjugated linoleic acid (CLA) is a collective term describing a mixture of positional and geometric isomers of linoleic acid with two conjugated double bonds. Among these compounds two isomers cis9, trans11 and trans10, cis12 have received considerable attention. They are present in milk and meat fat of ruminants and the cis9, trans11 (rumenic acid) is the most abundant with lesser amounts of the trans10, cis12 isomer. A considerable number of papers suggest anticarcinogenic properties of CLA, including their ability to suppress the growth of different cancer cell lines in vitro. It was also found that these isomers may act through different mechanisms to inhibit carcinogenesis. In view of the above, the objective of this paper was evaluation of isomer-specific effects of the natural CLA isomers i.e. cis9, trans11 and trans10, cis12 on proliferation of mammary cancer cell lines. Two mammary cancer cell lines were used: MCF-7 and T47D (ATCC Collection). The cells were incubated with both CLA isomers: cis9,trans11 or trans10, cis12 within the range of 5-200 microM for 24-120 h. There were no toxic effects of any of the isomers in the range of 5-100 microM, as indicated by the Cytotoxicity Detection Kit (Roche) and cells proliferation was determined in these experimental conditions. Proliferation of cells was determined using Cell Proliferation ELISA BrdU (5' bromo-2' deoxyuridine), based on incorporation of BrdU to DNA of growing cells. The results obtained indicate that both isomers suppress the proliferation of the studied mammary cancer cell lines i.e. MCF-7 and T47D, especially when treated with the CLA isomers for 48 h or longer. Of the studied lines the strongest growth-suppressing function approximately 65% was observed for the line T47D. Topics: Apoptosis; Breast Neoplasms; Cell Division; Cell Line; Cell Line, Tumor; Cell Proliferation; Female; Humans; Linoleic Acids, Conjugated | 2009 |
An enriched mixture of trans-10,cis-12-CLA inhibits linoleic acid metabolism and PGE2 synthesis in MDA-MB-231 cells.
Conjugated linoleic acid (CLA) isomers are potent inhibitors of mammary tumor cell growth. Evidence suggests that CLA modulates essential fatty acid (EFA) metabolism; however, it is not clear which parts of this pathway are important regulatory points modulated by CLA. Enriched mixtures of D9-cis,11-trans (D9c,11t)- and D10-trans,12-cis (D10t,12c)-18:2 were used to assess outcome measures of EFA metabolism pertaining to membrane phospholipid incorporation, tumor cell growth, and prostaglandin E2 (PGE2) synthesis in the MDA-MB-231 mammary tumor cell line. Tumor cells were treated with linoleic acid (LA), an equal mixture (Mix), or enriched preparations of D9c,11t- or D10t,12c-18:2. Treatment with Mix or the enriched mixture of D10t,12c-18:2 significantly inhibited the synthesis of arachidonic acid (AA) from LA, resulting in increased levels of LA and decreased levels of AA in membrane phosphatidylcholine and phosphatidylethanolamine (P < 0.05). LA and AA levels were not altered in cells treated with enriched D9c,11t-18:2 and were similar to those in LA control treated cells. All CLA treatments reduced [3H]thymidine uptake, an indicator of tumor cell growth, by more than one-half relative to LA controls. MDA-MB-231 cells challenged with AA in the presence of all CLA mixtures resulted in significantly reduced PGE2 synthesis relative to controls treated with LA (P < 0.05). It is evident that individual isomers exert inhibitory effects at specific steps of EFA metabolism, which correspondingly leads to a reduction in PGE2 synthesis and, ultimately, tumor growth. Topics: Analysis of Variance; Arachidonic Acid; Breast Neoplasms; Dinoprostone; Female; Glycerophospholipids; Humans; Linoleic Acid; Linoleic Acids; Linoleic Acids, Conjugated; Stereoisomerism; Time Factors; Tumor Cells, Cultured | 2002 |
Inhibition of stearoyl-CoA desaturase activity by the cis-9,trans-11 isomer and the trans-10,cis-12 isomer of conjugated linoleic acid in MDA-MB-231 and MCF-7 human breast cancer cells.
Conjugated linoleic acid (CLA) is a collective term for a group of positional and geometric conjugated dienoic isomers of linoleic acid. CLA has been shown to have strong inhibitory effects on mammary carcinogenesis both in vitro and in vivo. In this study, we investigated the regulation of human stearoyl-CoA desaturase (SCD, EC 1.14.99.5) expression by CLA in human breast cancer cell lines, MDA-MB-231 and MCF-7. Treatment of the cells with the cis-9,trans-11 and trans-10,cis-12 CLA isomers (45 microM) did not repress SCD mRNA in both MDA-MB-231 and MCF-7 cells. However, the cis-9,trans-11 and trans-10,cis-12 CLA isomers significantly decreased SCD protein levels and SCD activity in MDA-MB-231 cells. In MCF-7 cells, both isomers did not affect protein levels, but they inhibited SCD activity. These results suggest that in MDA-MB-231 cells the cis-9,trans-11 and trans-10,cis-12 CLA isomers regulate human SCD by reducing SCD protein levels, while in MCF-7 cells both isomers have a direct inhibitory effect on SCD enzyme activity. Topics: Anticarcinogenic Agents; Blotting, Northern; Blotting, Western; Breast Neoplasms; Fatty Acids; Humans; Linoleic Acids; Linoleic Acids, Conjugated; Lipid Metabolism; Microsomes; RNA; RNA, Messenger; Stearoyl-CoA Desaturase; Stereoisomerism; Tumor Cells, Cultured | 2002 |