1-palmitoyl-2-oleoylglycero-3-phosphoglycerol has been researched along with Respiratory-Distress-Syndrome--Newborn* in 4 studies
4 other study(ies) available for 1-palmitoyl-2-oleoylglycero-3-phosphoglycerol and Respiratory-Distress-Syndrome--Newborn
Article | Year |
---|---|
Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4.
Surfactant-like membranes containing the 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL4), have been clinically tested as a therapeutic agent for respiratory distress syndrome in premature infants. The aims of this study were to investigate the interactions between the KL4 peptide and lipid bilayers, and the role of both the lipid composition and KL4 structure on the surface adsorption activity of KL4-containing membranes. We used bilayers of three-component systems [1,2-dipalmitoyl-phosphatidylcholine/1-palmitoyl-2-oleoyl-phosphatidylglycerol/palmitic acid (DPPC/POPG/PA) and DPPC/1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/PA] and binary lipid mixtures of DPPC/POPG and DPPC/PA to examine the specific interaction of KL4 with POPG and PA. We found that, at low peptide concentrations, KL4 adopted a predominantly alpha-helical secondary structure in POPG- or POPC-containing membranes, and a beta-sheet structure in DPPC/PA vesicles. As the concentration of the peptide increased, KL4 interconverted to a beta-sheet structure in DPPC/POPG/PA or DPPC/POPC/PA vesicles. Ca2+ favored alpha<-->beta interconversion. This conformational flexibility of KL4 did not influence the surface adsorption activity of KL4-containing vesicles. KL4 showed a concentration-dependent ordering effect on POPG- and POPC-containing membranes, which could be linked to its surface activity. In addition, we found that the physical state of the membrane had a critical role in the surface adsorption process. Our results indicate that the most rapid surface adsorption takes place with vesicles showing well-defined solid/fluid phase co-existence at temperatures below their gel to fluid phase transition temperature, such as those of DPPC/POPG/PA and DPPC/POPC/PA. In contrast, more fluid (DPPC/POPG) or excessively rigid (DPPC/PA) KL4-containing membranes fail in their ability to adsorb rapidly onto and spread at the air-water interface. Topics: 1,2-Dipalmitoylphosphatidylcholine; Amino Acid Sequence; Calorimetry; Circular Dichroism; Humans; Infant, Newborn; Models, Molecular; Molecular Sequence Data; Peptides; Phosphatidylglycerols; Pulmonary Surfactants; Respiratory Distress Syndrome, Newborn; Thermodynamics | 2006 |
A synthetic surfactant based on a poly-Leu SP-C analog and phospholipids: effects on tidal volumes and lung gas volumes in ventilated immature newborn rabbits.
Available surfactants for treatment of respiratory distress syndrome in newborn infants are derived from animal lungs, which limits supply and poses a danger of propagating infectious material. Poly-Val-->poly-Leu analogs of surfactant protein (SP)-C can be synthesized in large quantities and exhibit surface activity similar to SP-C. Here, activity of synthetic surfactants containing a poly-Leu SP-C analog (SP-C33) was evaluated in ventilated premature newborn rabbits. Treatment with 2.5 ml/kg body wt of 2% (wt/wt) SP-C33 in 1,2-dipalmitoyl-sn-3-glycero phosphoryl choline (DPPC)-1-palmitoyl-2-oleoyl-sn-3-glycero phosphoryl choline (POPC)-1-palmitoyl-2-oleoyl-sn-3-glycero phosphoryl glycerol (POPG), 68:0:31, 68:11:20, or 68:16:15 (wt/wt/wt) suspended at 80 mg/ml gave tidal volumes (Vt) of 20-25 ml/kg body wt, with an insufflation pressure of 25 cmH2O and no positive end-expiratory pressure (PEEP), comparable to the Vt for animals treated with the porcine surfactant Curosurf. Nontreated littermates had a Vt of approximately 2 ml/kg body wt. The Vt for SP-C33 in DPPC-egg phosphatidylglycerol-palmitic acid [68:22:9 (wt/wt/wt)], DPPC-POPG-palmitic acid [68:22:9 (wt/wt/wt)], and DPPC-POPC-POPG [6:2:2 (wt/wt/wt)] was 15-20 ml/kg body wt. Histological examination of lungs from animals treated with SP-C33-based surfactants showed incomplete, usually patchy air expansion of alveolar spaces associated with only mild airway epithelial damage. Lung gas volume after 30 min of mechanical ventilation were more than threefold larger in animals treated with Curosurf than in those receiving SP-C33 in DPPC-POPC-POPG, 68:11:20. This difference could be largely counterbalanced by ventilation with PEEP (3-4 cmH2O). An artificial surfactant based on SP-C33 improves Vt in immature newborn animals ventilated with standardized peak pressure but requires PEEP to build up adequate lung gas volumes. Topics: Amino Acid Sequence; Animals; Animals, Newborn; Humans; Infant, Newborn; Lung; Molecular Sequence Data; Phosphatidylcholines; Phosphatidylglycerols; Protein Structure, Tertiary; Pulmonary Surfactant-Associated Protein C; Rabbits; Respiration, Artificial; Respiratory Distress Syndrome, Newborn; Tidal Volume | 2003 |
SP-B refining of pulmonary surfactant phospholipid films.
Pulmonary surfactant stabilizes the alveoli by lining the air-fluid interface with films that reduce surface tension to near 0 mN/m (gamma(min)). Surfactant protein B (SP-B) enhances the surface activity of surfactant phospholipids. A captive bubble tensiometer (CBT) was used to study the properties of adsorbed films of dipalmitoylphosphatidylcholine (DPPC) with acidic 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) or neutral 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine with (7:3) and without 1% dimeric SP-B. SP-B enhanced the adsorption rate of DPPC-containing neutral or acidic lipid suspensions (1 mg/ml) to a similar extent. Quasi-static cycling of these films revealed that SP-B significantly decreased the film area reduction required to reach gamma(min) for the acidic but not for the neutral system. The results obtained with DPPC-phosphatidylglycerol (PG)-SP-B were consistent with selective DPPC adsorption into the surface monolayer during film formation. Film area reduction required to reach gamma(min) with this system (with and without calcium) approached that of pure DPPC, suggesting selective DPPC insertion and PG squeeze-out. Dynamic cycling of such films showed that larger film area reductions were required to reach gamma(min) for the neutral than for acidic system, even after 20 cycles. Fluorescence microscopy of solvent-spread DPPC-POPG-SP-B planar films revealed highly condensed structures at approximately 25 mN/m, although no specific PG phase-segregated structures could be identified. The study suggests that specific interactions of SP-B with acidic phospholipids of surfactant may be involved in the generation and maintenance of DPPC-rich films in the alveoli. Topics: Adsorption; Air; Animals; Cattle; Humans; Infant, Newborn; Mass Spectrometry; Membrane Proteins; Membranes, Artificial; Microscopy, Fluorescence; Phosphatidylglycerols; Proteolipids; Pulmonary Alveoli; Pulmonary Surfactants; Respiratory Distress Syndrome, Newborn; Surface Tension; Water | 1999 |
Efficacy of synthetic peptide-containing surfactant in the treatment of respiratory distress syndrome in preterm infant rhesus monkeys.
Studies were conducted to assess the efficacy and safety of a synthetic peptide-containing surfactant in the treatment of respiratory distress syndrome (RDS) in preterm (approximately 80% of normal gestation) infant rhesus monkeys. Surfactant was prepared consisting of the phospholipids dipalmitoylphosphatidyl choline and palmitoyl-oleoyl phosphatidyl glycerol and a synthetic peptide modeled after surfactant protein B (SP-B), "KL4-Surfactant" contained a peptide having the sequence KLLLLKLLLLKLLLLKLLLLK, where "K" is lysine and "L" is leucine. The peptide was selected because it mimics the repeating stretches of hydrophobic residues with intermittent basic hydrophilic residues seen in SP-B. KL4-Surfactant was shown to have biophysical activity assessed as the ability to lower surface tension at an air-liquid interface in a pulsating bubble surfactometer. Thirty premature rhesus monkeys were treated shortly after birth with one dose of KL4-Surfactant. The arterial to alveolar oxygen partial pressure ratio (a/A) was found to rise from a pretreatment level of 0.11 +/- 0.01 (mean +/- SEM), indicative of severe RDS, to 0.40 +/- 0.02 at 12-13 h post-treatment. The improvement in oxygenation persisted throughout the study period, with a mean a/A at 22-23 h of 0.45 +/- 0.07. Chest radiographs and gross and microscopic examination of the lungs all confirmed the reversal of the atelectasis seen before treatment. Animals treated with a dose of 200 mg/kg showed a faster, more consistent, and greater response than did a group treated with an average dose of 127 mg/kg. There was no evidence of toxicity after treatment with the higher dose as demonstrated by physiologic, hematologic, biochemical, and pathologic data. The importance of the peptide in the synthetic surfactant was apparent from the results obtained with a control group of nine premature monkeys treated with a non-peptide-containing surfactant; the a/A of this group was 0.15 +/- 0.03 at nine hours of age as compared with a value of 0.38 +/- 0.02 for 30 comparable animals receiving KL4-Surfactant. Topics: 1,2-Dipalmitoylphosphatidylcholine; Amino Acid Sequence; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Humans; Infant, Newborn; Lung; Macaca mulatta; Molecular Sequence Data; Peptides; Phosphatidylglycerols; Pregnancy; Pulmonary Surfactants; Radiography; Respiratory Distress Syndrome, Newborn | 1996 |