1-cyclohexyl-3-dodecylurea has been researched along with Hypertension* in 1 studies
1 other study(ies) available for 1-cyclohexyl-3-dodecylurea and Hypertension
Article | Year |
---|---|
Role of 20-hydroxyeicosatetraenoic and epoxyeicosatrienoic acids in the regulation of vascular function in a model of hypertension and endothelial dysfunction.
The objective of this study was to determine if acute inhibition of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis or reduced inactivation of epoxyeicosatrienoic acids (EETs) can correct L-N(G)-nitro-arginine-methyl-ester (L-NAME)-induced abnormal vascular reactivity in the perfused mesenteric bed and the carotid artery of spontaneously hypertensive rats (SHR). Administration of L-NAME in drinking water (80 mg/l) to SHR for 3 weeks resulted in abnormal vascular reactivity to norepinephrine and carbachol in the perfused mesenteric vascular bed and carotid artery, and significantly elevated mean arterial blood pressure (244 +/- 9 mm Hg) as compared to SHR controls drinking regular water (176 +/- 3 mm Hg). In the perfused mesenteric vascular bed, the impaired vascular responsiveness to norepinephrine was corrected by acute treatment with N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET0016), an inhibitor of 20-HETE formation, but not by 1-cyclohexyl-3-dodecyl urea (CDU), an inhibitor of soluble epoxide hydrolase. Treatment with either HET0016 or CDU did not improve impaired carbachol-induced vasodilation in the perfused mesenteric vascular bed. In the isolated carotid artery, treatment with HET0016 corrected the L-NAME-induced increase in norepinephrine-induced vasoconstriction, whereas only CDU treatment could improve impaired carbachol-induced vasodilation. Results of this study indicate that vascular function in a state of compromised nitric oxide formation is differentially modulated by 20-HETE and EETs, and that treatment with HET0016 or CDU may improve vascular function in a state of high blood pressure and endothelial dysfunction. Topics: Amidines; Animals; Arachidonic Acids; Blood Pressure; Carbachol; Cardiovascular Physiological Phenomena; Carotid Arteries; Endothelial Cells; Hydroxyeicosatetraenoic Acids; Hypertension; Male; Norepinephrine; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Urea; Vascular Diseases; Vasoconstriction; Vasoconstrictor Agents; Vasodilation | 2010 |