1-arabinofuranosylcytosine-5--stearylphosphate and Lymphoma--Non-Hodgkin

1-arabinofuranosylcytosine-5--stearylphosphate has been researched along with Lymphoma--Non-Hodgkin* in 2 studies

Trials

2 trial(s) available for 1-arabinofuranosylcytosine-5--stearylphosphate and Lymphoma--Non-Hodgkin

ArticleYear
Oral cytarabine ocfosfate in acute myeloid leukemia and non-Hodgkin's lymphoma--phase I/II studies and pharmacokinetics.
    Leukemia, 1998, Volume: 12, Issue:10

    Cytosine arabinoside (AraC) is rapidly inactivated via systemic deamination with half-lives ranging from 1 h (i.v.) to 4 h (s.c.) -- and cannot be applied orally due to its hydrophilic properties. These limitations might be overcome by YNK01 -- a lipophilic prodrug of AraC -- that is resistant to deoxycytidine deaminase and can be applied orally. In the present study the therapeutic activity, side-effects and pharmacokinetics of YNK01 were evaluated in a phase I/II study including patients with relapsed or refractory acute myeloid leukemia (AML) (n=23) or low-grade non-Hodgkin's lymphoma (NHL) (n=20). YNK01 was given by 14 day cycles with escalating doses starting with a daily dose of 50 mg/m2 (equivalent to 20 mg/m2 AraC on a molar basis). The maximum tolerated dose was reached at the 600 mg/m2 dose level with WHO grade 3-4 diarrhoea as the main toxicity. In the 23 patients with AML two complete remissions, four partial remissions and three patients with stable disease were observed. In the 23 patients with AML two complete remissions, four partial remissions and three patients with NHL two cases reached partial remission and six other patients mainained stable disease. Pharmacokinetic evaluations were performed during 34 treatment cycles in 28 patients. The data suggest that YNK01 was absorbed in the distal part of the small intestine and taken up into hepatocytes. After hepatic psi and subsequent beta-oxydation of YNK01 the released AraC (and its deamination product AraU) appeared in the systemic circulation. Time of maximum concentration (h), half-life (h) and area under the curve (ng x h/ml, at the 1200 mg dose level) were as follows (VC variation coefficient) YNK01: 1.0 (0.58), 10.1 (0.43), 12622 (0.65); AraC: 23.2 (0.57), 22.6 (0.36), 3496 (0.76); AraU: 19.2 (0.58) 22.3 (0.33) 15441 (0.66). Of the total dose of YNK01 15.8% was absorbed and metabolized to AraC and AraU, defining the metabolic bioavailability of this prodrug. A linear relationship was observed between YNK01 dose and YNK01 AUC and AraC AUC over the whole dose range tested. AraC was released from hepatocytes over a prolonged period of time resulting in long lasting plasma levels similar to a continuous i.v. infusion. After administration of YNK01 at a dosage of 100-150 mg/m2 plasma levels of AraC were comparable to those achieved after low-dose AraC treatment (20 mg/m2) while at doses of YNK01 of 450-600 mg/m2 concentrations of standard-dose AraC (100 mg/m2) were obtained. We conclude

    Topics: Acute Disease; Administration, Oral; Adult; Antineoplastic Agents; Arabinonucleotides; Biological Availability; Cytarabine; Cytidine Monophosphate; Diarrhea; Dose-Response Relationship, Drug; Half-Life; Humans; Infusions, Intravenous; Leukemia, Myeloid; Lymphoma, Non-Hodgkin; Metabolic Clearance Rate; Prodrugs; Regression Analysis

1998
Pharmacokinetics of Ara-CMP-Stearate (YNK01): phase I study of the oral Ara-C derivative.
    Leukemia, 1995, Volume: 9, Issue:6

    Ara-CMP-Stearate (1-beta-D-arabinofuranosylcytosine-5'-stearylphosphate, YNK 01, Fosteabine) is the orally applicable prodrug of cytosine-arabinoside (Ara-C). During a phase I study in patients with advanced low-grade non-Hodgkin lymphomas or acute myeloid leukemia, the pharmacokinetic parameters of Ara-CMP-Stearate (kindly provided by ASTA Medica, Frankfurt, Germany) were determined by HPLC analysis. Seventy-two hours after a first starting dose which served for the determination of baseline pharmacokinetic parameters, Ara-CMP-Stearate was administered over 14 days by daily oral application. Ara-CMP-Stearate was started at a dose of 100 mg/day and was escalated in subsequent patients to 200 mg/day and 300 mg/day. Plasma and urine concentrations of Ara-CMP-Stearate, Ara-C and Ara-U were measured during the initial treatment phase and within 72 h after the end of the 14-day treatment cycle. So far six patients have been treated with 100 mg/day, three with 200 mg/day and another six with 300 mg/day. One patient was treated consecutively with 100 mg, 300 mg and 600 mg. Fitting the results of the plasma concentration measurements of Ara-CMP-Stearate to a one-compartment model, the following pharmacokinetic parameters were obtained (average and variation coefficient VC). Ara-CMP-Stearate dose-independent parameters: lag time = 1.04 h (0.57); tmax = 5.72 h (0.30); t1/2 = 9.4 h (0.36). Dose-dependent parameters: at 100 mg: AUC = 1099 ng/h/ml (0.31); concentration(max) = 53.8 ng/ml (0.28); at 200 mg: AUC = 2753 ng/h/ml (0.32); concentration(max) = 154.8 ng/ml (0.46); at 300 mg: AUC = 2940 ng/h/ml (0.66); concentration(max) = 160.0 ng/ml (0.59). The long lag time and late tmax can be explained by resorption in the distal part of the small intestine. No Ara-CMP-Stearate was detected in urine samples (limit of detection = 500 pg/ml). Pharmacokinetic parameters of Ara-C following Ara-CMP-Stearate application showed the following characteristics: t1/2 = 24.3 h (0.39); AUC (100 mg) = 262 ng/h/ml (0.93); AUC (200 mg) = 502 ng/h/ml (0.87); AUC (300 mg) = 898 ng/h/ml (1.07). Since Ara-CMP-Stearate causes intravascular hemolysis after intravenous administration, it was not possible to determine its bioavailability by comparing the AUC after oral and i.v. application. Instead, the renal elimination of Ara-U, as the main metabolite of Ara-C was measured during the first 72-h period and after the last application.(ABSTRACT TRUNCATED AT 400 WORDS)

    Topics: Administration, Oral; Antineoplastic Agents; Arabinofuranosyluracil; Arabinonucleotides; Cytarabine; Cytidine Monophosphate; Dose-Response Relationship, Drug; Half-Life; Humans; Leukemia, Myeloid, Acute; Lymphoma, Non-Hodgkin; Statistics, Nonparametric

1995