1-3-dimethylthiourea and Tachycardia--Ventricular

1-3-dimethylthiourea has been researched along with Tachycardia--Ventricular* in 1 studies

Other Studies

1 other study(ies) available for 1-3-dimethylthiourea and Tachycardia--Ventricular

ArticleYear
Reperfusion arrhythmias and purine wash-out in isolated rat and rabbit heart. Effect of allopurinol, dimethylthiourea and calcium reduction.
    Journal of molecular and cellular cardiology, 1993, Volume: 25, Issue:7

    The effects of perfusate calcium reduction, allopurinol and dimethylthiourea on reperfusion-induced arrhythmias and purine wash-out in isolated rabbit and rat hearts were compared. The overall incidence of reperfusion-induced ventricular tachycardia (VT) was 88% and 94% and that of ventricular fibrillation (VF) was 44% and 88% in the control rabbit and rat hearts, respectively. VF was reduced to 10% and 0% in rat and rabbit hearts subjected to perfusate calcium reduction (0.4 mM for 1 min before ischemia and for 1 min before and throughout reperfusion), respectively. In allopurinol, 1 mM, perfused rat hearts the overall incidence of VF was not changed and only the incidence of a sustained VF (that lasting for at least 10 min) was reduced. VT and VF were prevented in allopurinol-perfused rabbit hearts. Dimethylthiourea, 10 mM, reduced the incidence of VF in rat hearts to 16% and did not significantly affect VT and VF in rabbit hearts. In untreated rat hearts, the major purine compounds washed out upon reperfusion were inosine, hypoxanthine, xanthine and urate. Allopurinol augmented the wash-out of adenosine and abolished that of xanthine and urate. In untreated rabbit hearts, the major purine washed out were inosine, adenosine and hypoxanthine. Allopurinol did not cause further increase in adenosine wash-out in rabbit hearts. We speculate that: (1) calcium mediated arrhythmogenic mechanism is operating both in reperfused rat and rabbit heart; (2) free radical mediated mechanism is of an importance only in rat heart; (3) neither a decreased free radical production secondary to xanthine oxidase inhibition nor the augmentation of adenosine wash-out is a likely explanation for the antiarrhythmic effect of allopurinol in reperfused hearts; and (4) high level of myocardial adenosine accumulation during ischemia, probably secondary to low xanthine oxidase activity, may play a role of a natural defence mechanism in ischemic/reperfused rabbit heart.

    Topics: Adenosine; Allopurinol; Animals; Arrhythmias, Cardiac; Calcium; Female; Free Radicals; Heart; Incidence; Male; Myocardium; Oxidation-Reduction; Purines; Rabbits; Rats; Rats, Wistar; Receptors, Purinergic P1; Reperfusion Injury; Tachycardia, Ventricular; Thiourea; Xanthine Oxidase

1993