1-3-dimethylthiourea has been researched along with Chronic-Disease* in 2 studies
2 other study(ies) available for 1-3-dimethylthiourea and Chronic-Disease
Article | Year |
---|---|
Antioxidants attenuate chronic hypoxic pulmonary hypertension.
Because chronic hypoxia increases the production of oxygen radicals, we hypothesized that antioxidants attenuate chronic hypoxic pulmonary hypertension. In part 1, we examined the temporal progress in chronic hypoxic pulmonary hypertension in 46 Wistar rats exposed to hypoxia from 0-3 weeks. In part 2, we tested whether antioxidants attenuated chronic hypoxic pulmonary hypertension in 82 rats divided into 10 groups: control, fullerenol-1, U-83836E, dimethylthiourea-1, dimethylthiourea-2, hypoxia, hypoxia + fullerenol-1, hypoxia + U83836E, hypoxia + dimethylthiourea-1, and hypoxia + dimethylthiourea-2. Control animals breathed room air and were injected intraperitoneally with saline for 2 weeks. Fullerenol-1, U-83836E, and dimethylthiourea are antioxidants and were administered intraperitoneally for 2 weeks, except that dimethylthiourea was given either on days 3, 5, and 7 (dimethylthiourea-1), or on days 8, 10, and 12 (dimethylthiourea-2). Hypoxic animals were placed into a hypobaric chamber with a barometric pressure of 380 Torr for 2 weeks. Hypoxia + antioxidant groups were administered antioxidants during hypoxic exposure. We observed a gradual increase in pulmonary artery pressure, the weight ratio of right ventricle to left ventricle plus septum, and hematocrit during the 3 weeks of chronic hypoxia. These hypoxia-induced alterations were significantly attenuated by U-83836E and dimethylthiourea, but not by fullerenol-1. Neither the temporal alterations nor the antioxidant effects can be explained by the change in either tracheal neutral endopeptidase activity or the lung or plasma substance P level, perhaps because of the time lag in sampling. These results indicate that oxygen radicals play an important role in the development of chronic hypoxic pulmonary hypertension. Topics: Animals; Antioxidants; Body Weight; Chronic Disease; Free Radicals; Hypertension, Pulmonary; Hypoxia; Male; Rats; Rats, Wistar; Substance P; Thiourea | 1998 |
Effects of dimethylthiourea on chronic hypoxia-induced pulmonary arterial remodelling and ventricular hypertrophy in rats.
Ischemia, followed by reperfusion and restoration of oxygen to tissues, generates hydrogen peroxide which in turn generates injurious free radicals, particularly hydroxyl. Chronic hypoxia may also result in liberation of free radicals. In rats, chronic hypoxia causes pulmonary hypertension, associated with structural remodelling of pulmonary arteries, polycythemia, and vasoconstriction. We studied in rats the effects of dimethylthiourea (DMTU), a hydroxyl and hydrogen peroxide scavenger, on acute hypoxic vasoconstriction, and on the arterial structure and development of polycythemia after chronic hypoxia (FIO2 0.10 for 10 days, daily DMTU). DMTU did not affect acute vasoconstriction nor polycythemia. It significantly reduced muscularization of alveolar wall and alveolar duct arteries, medial thickening of alveolar wall and preacinar arteries, and right ventricular hypertrophy, suggesting reduction of pulmonary hypertension. However, DMTU caused marked growth retardation in both control and hypoxic rats, an effect not previously described. In other rats a similar degree of growth retardation due to reduced food intake failed to prevent the effects of hypoxia, suggesting that DMTU's effect is not through this mechanism. The results of this study support but do not confirm the hypothesis that free radicals may have a role in the pathogenesis of the arterial structural changes in the microcirculation contributing to chronic hypoxic pulmonary hypertension. However, in view of DMTU's effects on growth, definitive testing of the hypothesis will not be possible until other, less toxic, chronic hydroxyl scavengers become available. Topics: Animals; Cardiomegaly; Chronic Disease; Free Radical Scavengers; Hypertension, Pulmonary; Hypoxia; Male; Polycythemia; Pulmonary Artery; Rats; Rats, Inbred Strains; Thiourea; Vasoconstriction; Weight Gain | 1989 |