1-3-dimethylthiourea has been researched along with Cerebral-Infarction* in 2 studies
2 other study(ies) available for 1-3-dimethylthiourea and Cerebral-Infarction
Article | Year |
---|---|
Free radicals and brain damage due to transient middle cerebral artery occlusion: the effect of dimethylthiourea.
The objective of this study was to assess whether dimethylthiourea (DMTU), an established free radical scavenger, ameliorates ischaemic damage due to 2-3 h of transient middle cerebral artery (MCA) occlusion, induced by an intraluminal filament. A major point addressed was whether DMTU given before MCA occlusion only delayed the "maturation" of the damage, or if it had a lasting effect on infarct size. The end point was morphological, and either encompassed triphenyltetrazolium chloride (TTC) staining of tissue slices after 24 h or 48 h of recovery, or histopathological assessment of infarct size after 7 days of recovery. In a preliminary series of experiments, rats were subjected to 3 h of MCA occlusion, and infarct volume was assessed by TTC staining after 24 h of recovery. DMTU in a dose of 750 mg/kg reduced infarct volume by more than 50%. However, due to a high mortality rate, that protocol was not subsequently pursued. When the ischaemia duration was reduced to 2 h and the DMTU dose to 400 mg/kg, a similar amelioration of the tissue damage was observed. However, since DMTU reduced a spontaneous rise in body temperature to 39.0-39.5 degrees C, DMTU-treated animals in the main series of experiments with 24 and 48 h of recovery were treated so that they had the same temperature rise as the saline controls. Under such constant temperature conditions, the effect of DMTU at 24 h of recovery was borderline (P = 0.052) and at 48 h it was nil. The lack of a lasting effect of DMTU was supported by the findings on evaluation of infarct area after 7 days of recovery. The results raise the important question whether DMTU, and perhaps other free radical scavengers, delay rather than ameliorate the ischaemic lesion developing after transient MCA occlusion. Topics: Animals; Body Temperature; Cerebral Arteries; Cerebral Infarction; Free Radicals; Histocytochemistry; Ischemic Attack, Transient; Male; Oxazines; Rats; Rats, Wistar; Rosaniline Dyes; Staining and Labeling; Tetrazolium Salts; Thiourea | 1993 |
Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats.
Free radicals have been shown to play an important role in ischemia-reperfusion injury in several organ systems; however, the role of free radicals in central nervous system ischemia has been less well studied. Many potential free radical-generating systems exist. The primary products of these reactions, superoxide and hydrogen peroxide, may combine to produce hydroxyl radicals. Of the many potential sources of free radical generation, the enzyme xanthine oxidase has been shown to be important in ischemia in noncerebral tissue. We investigated the effect of the hydroxyl radical scavenger dimethylthiourea and the xanthine oxidase inhibitor allopurinol on infarct volume in a model of continuous partial ischemia. Male Sprague-Dawley rats were treated with dimethylthiourea or allopurinol before middle cerebral artery occlusion. Infarct volume was measured by triphenyltetrazolium chloride staining of brains removed 3 or 24 hours after occlusion. Stroke volume was reduced by 30% after dimethylthiourea treatment and by 32-35% after allopurinol treatment. At 24 hours after stroke, cortical tissue was more effectively protected than caudate tissue with both agents. Pretreatment with dimethylthiourea and allopurinol also significantly reduced cerebral edema formation and improved blood-brain barrier function as measured by fluorescein uptake. Our results imply that hydroxyl radicals are important in tissue injury secondary to partial cerebral ischemia and that xanthine oxidase may be the primary source of these radicals. Topics: Allopurinol; Animals; Arterial Occlusive Diseases; Blood-Brain Barrier; Brain Chemistry; Cerebral Arteries; Cerebral Infarction; Disease Models, Animal; Drug Evaluation, Preclinical; Male; Rats; Rats, Inbred Strains; Staining and Labeling; Stroke Volume; Thiourea; Time Factors | 1989 |