1-25-dihydroxy-16-ene-vitamin-d3 and Leukemia--Myeloid

1-25-dihydroxy-16-ene-vitamin-d3 has been researched along with Leukemia--Myeloid* in 1 studies

Other Studies

1 other study(ies) available for 1-25-dihydroxy-16-ene-vitamin-d3 and Leukemia--Myeloid

ArticleYear
1alpha,25-dihydroxy-24-oxo-16-ene vitamin D3, a metabolite of a synthetic vitamin D3 analog, 1alpha,25-dihydroxy-16-ene vitamin D3, is equipotent to its parent in modulating growth and differentiation of human leukemic cells.
    The Journal of steroid biochemistry and molecular biology, 1996, Volume: 59, Issue:5-6

    1alpha,25(OH)2-16-ene-D3, a synthetic analog of the steroid hormone, 1alpha,25(OH)2D3, has great potential to become a drug in the treatment of leukemia and other proliferative disorders, because of its minimal in vivo calcemic activity associated with a potent inhibitory effect on cell growth. However, at present, the mechanisms through which 1alpha,25(OH)2-16-ene-D3 expresses its biological activities are still not completely understood. Our previous in vitro study in a perfused rat kidney indicated for the first time that 1alpha,25(OH)2-16-ene-D3 and 1alpha,25(OH)2D3 are metabolized differently. 1alpha,25(OH)2-24-oxo-16-ene-D3, an intermediary metabolite of 1alpha,25(OH)2-16-ene-D3 formed through the C-24 oxidation pathway, accumulated significantly in the perfusate when compared to 1alpha,25(OH)2-24-oxo-D3, the corresponding intermediary metabolite of 1alpha,25(OH)2D3. In a subsequent in vivo study, we also reported that 1alpha,25(OH)2-24-oxo-16-ene-D3 exerted immunosuppressive activity equal to its parent, without causing significant hypercalcemia. In order to establish further the critical role of 1alpha,25(OH)2-24-oxo-16-ene-D3, in generating some of the key biological activities ascribed to its parent, we performed the present in vitro study using a human myeloid leukemic cell line (RWLeu-4) as a model. Comparative target tissue metabolism studies indicated that 1alpha,25(OH)2-16-ene-D3 and 1alpha,25(OH)2D3 are metabolized differently in RWLeu-4 cells, and the differences were similar to the ones we previously observed in the rat kidney. The significant finding was the accumulation of 1alpha,25(OH)2-24-oxo-16-ene-D3 in RWLeu-4 cells because of its resistance to further metabolism. Biological activity studies indicated that both 1alpha,25(OH)2-16-ene-D3 and its 24-oxo metabolite produced growth inhibition and promoted differentiation of RWLeu-4 cells to the same extent, and these activities were several fold higher than those exerted by 1alpha,25(OH)2D3. In addition, the genomic action of each vitamin D compound was assessed in a rat osteosarcoma cell line (ROS 17/2.8) by measuring its ability to transactivate a gene construct containing the vitamin D response element of the osteocalcin gene linked to the growth hormone reporter gene. In these studies, both 1alpha,25(OH)2-16-ene-D3 and its 24-oxo metabolite exerted similar but potent transactivation activity which was several fold greater than that exerted by 1alpha,25(OH)2D3 itself. In summary, ou

    Topics: Calcitriol; Cell Differentiation; Cell Division; Chromatography, High Pressure Liquid; Humans; Leukemia, Myeloid; Receptors, Calcitriol; Transcription, Genetic; Tumor Cells, Cultured

1996