1-2-oleoylphosphatidylcholine has been researched along with Alzheimer-Disease* in 7 studies
7 other study(ies) available for 1-2-oleoylphosphatidylcholine and Alzheimer-Disease
Article | Year |
---|---|
Lipid membranes catalyse the fibril formation of the amyloid-β (1-42) peptide through lipid-fibril interactions that reinforce secondary pathways.
Alzheimer's disease is associated with the aggregation of amyloid-β (Aβ) peptides into oligomers and fibrils. We have explored how model lipid membranes modulate the rate and mechanisms of Aβ(1-42) self-assembly, in order to shed light on how this pathological reaction may occur in the lipid-rich environments that the peptide encounters in the brain. Using a combination of in vitro biophysical experiments and theoretical approaches, we show that zwitterionic DOPC lipid vesicles accelerate the Aβ(1-42) fibril growth rate by interacting specifically with the growing fibrils. We probe this interaction with help of a purpose-developed Förster resonance energy transfer assay that monitors the proximity between a fibril-specific dye and fluorescent lipids in the lipid vesicle membrane. To further rationalise these findings we use mathematical models to fit the aggregation kinetics of Aβ(1-42) and find that lipid vesicles alter specific mechanistic steps in the aggregation reaction; they augment monomer-dependent secondary nucleation at the surface of existing fibrils and facilitate monomer-independent catalytic processes consistent with fibril fragmentation. We further show that DOPC vesicles have no effect on primary nucleation. This finding is consistent with experiments showing that Aβ(1-42) monomers do not directly bind to the lipid bilayer. Taken together, our results show that plain lipid membranes with charge and composition that is representative of outer cell membranes can significantly augment autocatalytic steps in the self-assembly of Aβ(1-42) into fibrils. This new insight suggests that strategies to reduce fibril-lipid interactions in the brain may have therapeutic value. Topics: Alzheimer Disease; Amyloid; Amyloid beta-Peptides; Brain; Catalysis; Cell Membrane; Humans; Kinetics; Lipid Bilayers; Membrane Lipids; Peptide Fragments; Phosphatidylcholines | 2017 |
Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β.
The aggregation of amyloid-β (Aβ) on lipid bilayers has been implicated as a mechanism by which Aβ exerts its toxicity in Alzheimer's disease (AD). Lipid bilayer thinning has been observed during both oxidative stress and protein aggregation in AD, but whether these pathological modifications of the bilayer correlate with Aβ misfolding is unclear. Here, we studied peptide-lipid interactions in synthetic bilayers of the short-chain lipid dilauroyl phosphatidylcholine (DLPC) as a simplified model for diseased bilayers to determine their impact on Aβ aggregate, protofibril, and fibril formation. Aβ aggregation and fibril formation in membranes composed of dioleoyl phosphatidylcholine (DOPC) or 1- palmitoyl-2-oleoyl phosphatidylcholine mimicking normal bilayers served as controls. Differences in aggregate formation and stability were monitored by a combination of thioflavin-T fluorescence, circular dichroism, atomic force microscopy, transmission electron microscopy, and NMR. Despite the ability of all three lipid bilayers to catalyze aggregation, DLPC accelerates aggregation at much lower concentrations and prevents the fibrillation of Aβ at low micromolar concentrations. DLPC stabilized globular, membrane-associated oligomers, which could disrupt the bilayer integrity. DLPC bilayers also remodeled preformed amyloid fibrils into a pseudo-unfolded, molten globule state, which resembled on-pathway, protofibrillar aggregates. Whereas the stabilized, membrane-associated oligomers were found to be nontoxic, the remodeled species displayed toxicity similar to that of conventionally prepared aggregates. These results provide mechanistic insights into the roles that pathologically thin bilayers may play in Aβ aggregation on neuronal bilayers, and pathological lipid oxidation may contribute to Aβ misfolding. Topics: Alzheimer Disease; Amyloid beta-Peptides; Humans; Lipid Bilayers; Phosphatidylcholines; Protein Aggregates; Protein Structure, Secondary | 2017 |
Aggregation of Aß(25-35) on DOPC and DOPC/DHA bilayers: an atomic force microscopy study.
β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM) study of Aβ(25-35) aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC) and DOPC/docosahexaenoic 22∶6 acid (DHA) lipid bilayers. Aβ(25-35) is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35) forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts. Topics: Alzheimer Disease; Amyloid beta-Peptides; Cell Membrane; Docosahexaenoic Acids; Humans; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Microscopy, Atomic Force; Phosphatidylcholines; Plaque, Amyloid | 2014 |
Familial Alzheimer's disease Osaka mutant (ΔE22) β-barrels suggest an explanation for the different Aβ1-40/42 preferred conformational states observed by experiment.
An unusual ΔE693 mutation in the amyloid precursor protein (APP) producing a β-amyloid (Aβ) peptide lacking glutamic acid at position 22 (Glu22) was recently discovered, and dabbed the Osaka mutant (ΔE22). Previously, several point mutations in the Aβ peptide involving Glu22 substitutions were identified and implicated in the early onset of familial Alzheimer's disease (FAD). Despite the absence of Glu22, the Osaka mutant is also associated with FAD, showing a recessive inheritance in families affected by the disease. To see whether this aggregation-prone Aβ mutant could directly relate to the Aβ ion channel-mediated mechanism as observed for the wild type (WT) Aβ peptide in AD pathology, we modeled Osaka mutant β-barrels in a lipid bilayer. Using molecular dynamics (MD) simulations, two conformer ΔE22 barrels with the U-shaped monomer conformation derived from NMR-based WT Aβ fibrils were simulated in explicit lipid environment. Here, we show that the ΔE22 barrels obtain the lipid-relaxed β-sheet channel topology, indistinguishable from the WT Aβ1-42 barrels, as do the outer and pore dimensions of octadecameric (18-mer) ΔE22 barrels. Although the ΔE22 barrels lose the cationic binding site in the pore which is normally provided by the negatively charged Glu22 side chains, the mutant pores gain a new cationic binding site by Glu11 at the lower bilayer leaflet, and exhibit ion fluctuations similar to the WT barrels. Of particular interest, this deletion mutant suggests that toxic WT Aβ1-42 would preferentially adopt a less C-terminal turn similar to that observed for Aβ17-42, and explains why the solid state NMR data for Aβ1-40 point to a more C-terminal turn conformation. The observed ΔE22 barrels conformational preferences also suggest an explanation for the lower neurotoxicity in rat primary neurons as compared to WT Aβ1-42. Topics: Alzheimer Disease; Amino Acid Sequence; Amyloid; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Binding Sites; Humans; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Molecular Dynamics Simulation; Peptide Fragments; Phosphatidylcholines; Protein Conformation; Protein Structure, Secondary; Sequence Deletion | 2013 |
Differing modes of interaction between monomeric Aβ(1-40) peptides and model lipid membranes: an AFM study.
Membrane interactions with β-amyloid peptides are implicated in the pathology of Alzheimer's disease and cholesterol has been shown to be key modulator of this interaction, yet little is known about the mechanism of this interaction. Using atomic force microscopy, we investigated the interaction of monomeric Aβ(1-40) peptides with planar mica-supported bilayers composed of DOPC and DPPC containing varying concentrations of cholesterol. We show that below the bilayer melting temperature, Aβ monomers adsorb to, and assemble on, the surface of DPPC bilayers to form layers that grow laterally and normal to the bilayer plane. Above the bilayer melting temperature, we observe protofibril formation. In contrast, in DOPC bilayers, Aβ monomers exhibit a detergent-like action, forming defects in the bilayer structure. The kinetics of both modes of interaction significantly increases with increasing membrane cholesterol content. We conclude that the mode and rate of the interaction of Aβ monomers with lipid bilayers are strongly dependent on lipid composition, phase state and cholesterol content. Topics: 1,2-Dipalmitoylphosphatidylcholine; Alzheimer Disease; Amyloid beta-Peptides; Cholesterol; Humans; Lipid Bilayers; Microscopy, Atomic Force; Peptide Fragments; Phosphatidylcholines | 2012 |
Real-time observation of model membrane dynamics induced by Alzheimer's amyloid beta.
Amyloid beta (Abeta) has been strongly implicated in inducing neurotoxicity in the pathology of Alzheimer's disease (AD). However, the underlying mechanisms remain unknown. In this study, we examined, in real-time, the spatio-temporal changes in individual model membranes induced by the presence of different Abeta-40 molecular assemblies (species). We used cell-sized lipid vesicles to enable the direct observation of these changes. We found three significantly different membrane-transformation pathways. We characterized the biophysical mechanisms behind these transformations in terms of the change in inner vesicle volume and surface area. Oligomeric Abeta exhibited the highest tendency to cause membrane fluctuation and transformations. Interestingly, mature fibrils, which are often considered inert species, also induced profound membrane changes. Furthermore, we imaged the localization of pre-fibrillar species on membranes. The real-time observation of these morphological transformations, which can be missed in a discretised analysis, may help to unlock the mechanisms of AD's Abeta-induced neuro-degeneration. Topics: Alzheimer Disease; Amyloid beta-Peptides; Peptide Fragments; Phosphatidylcholines; Unilamellar Liposomes | 2010 |
Cerebrospinal fluid secretory Ca2+-dependent phospholipase A2 activity is increased in Alzheimer disease.
The phospholipase A(2) (PLA2) family comprises multiple isoenzymes that vary in their physicochemical properties, cellular localizations, calcium sensitivities, and substrate specificities. Despite these differences, PLA2s share the ability to catalyze the synthesis of the precursors of the proinflammatory mediators. To investigate the potential of PLA2 as a biomarker in screening neuroinflammatory disorders in both clinical and research settings, we developed a PLA2 assay and determined the predominant types of PLA2 activity in cerebrospinal fluid (CSF).. We used liposomes composed of a fluorescent probe (bis-Bodipy FL C11-PC [1,2-bis-(4,4- difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glycero-3-phosphocholine]) and 1,2-dioleoyl-l-alpha-phosphatidylcholine as a substrate to measure CSF PLA2 activity in a 96-well microtiter plate format. We established the type of CSF PLA2 activity using type-specific inhibitors of PLA2.. Using 5 microL CSF per assay, our PLA2 activity assay was reproducible with CVs <15% in 2 CSF samples and for recombinant secretory Ca(2+)-dependent PLA2 (sPLA2) in concentrations ranging from 0.25 to 1 micromol/L. This PLA2 assay allowed identification of sPLA2 activity in lumbar CSF from healthy individuals 20-77 years old that did not depend on either sex or age. Additionally, CSF sPLA2 activity was found to be increased (P = 0.0008) in patients with Alzheimer disease.. Adult human CSF has sPLA2 activity that can be measured reliably with the assay described. This enzyme activity in the CSF is independent of both sex and age and might serve as a valuable biomarker of neuroinflammation, as we demonstrated in Alzheimer disease. Topics: Adult; Aged; Alzheimer Disease; Biomarkers; Calcium; Fluorescent Dyes; Humans; Middle Aged; Phosphatidylcholines; Phospholipases A2, Secretory; Reference Values; Young Adult | 2009 |