1-2-dioleoyloxy-3-(trimethylammonium)propane has been researched along with Skin-Neoplasms* in 3 studies
3 other study(ies) available for 1-2-dioleoyloxy-3-(trimethylammonium)propane and Skin-Neoplasms
Article | Year |
---|---|
Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response.
Certain types of cationic lipids have shown promise in cancer immunotherapy, but their mechanism of action is poorly understood. In this study, we describe the properties of an immunotherapeutic consisting of the pure cationic lipid enantiomer R-1,2-dioleoyl-3-trimethyl-ammonium-propane (R-DOTAP) formulated with modified viral or self-peptide Ags. R-DOTAP formulations with peptide Ags stimulate strong cross-presentation and potent CD8 T cell responses associated with a high frequency of polyfunctional CD8 T cells. In a human papillomavirus tumor model system, a single s.c. injection of tumor-bearing mice with R-DOTAP plus human papillomavirus Ags induces complete regression of large tumors associated with an influx of Ag-specific CD8 T cells and a reduction of the ratio of regulatory/Ag-specific CD8 T cells. R-DOTAP also synergizes with an anti-PD1 checkpoint inhibitor, resulting in a significant inhibition of B16 melanoma tumor growth. We found that R-DOTAP stimulates type I IFN production by dendritic cells in vivo and in vitro. s.c. injection of R-DOTAP results in an IFN-dependent increase in draining lymph node size and a concomitant increase in CD69 expression. Using knockout mice, we show that type I IFN is required for the induction of CD8 T cell activity following administration of R-DOTAP plus Ag. This response requires Myd88 but not TRIF or STING. We also show that R-DOTAP stimulates both TLR7 and 9. Collectively, these studies reveal that R-DOTAP stimulates endosomal TLRs, resulting in a Myd88-dependent production of type I IFN. When administered with Ag, this results in potent Ag-specific CD8 T cell responses and antitumor activity. Topics: Animals; Cells, Cultured; Disease Models, Animal; Fatty Acids, Monounsaturated; Humans; Immunotherapy, Adoptive; Interferon Type I; Lymphocyte Activation; Melanoma; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Mice, SCID; Mice, Transgenic; Myeloid Differentiation Factor 88; Nanoparticles; Papillomaviridae; Papillomavirus Infections; Quaternary Ammonium Compounds; Skin Neoplasms; T-Lymphocytes, Cytotoxic | 2019 |
Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention.
In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis.. UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo.. DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (p<0.01) skin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (p<0.05) the number of tumors observed in SKH-1 mice (3.33-fold), which was comparable to pretreatment with sunscreen (SPF30). Also, DIM-D-UltraFLEX-Nano caused decrease (p<0.05) in UV-induced DNA damage (8-hydroxydeoxyguanosine), skin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21).. UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30). Topics: 1,2-Dipalmitoylphosphatidylcholine; 8-Hydroxy-2'-Deoxyguanosine; Animals; Antioxidants; Carcinogenesis; Chemoprevention; Cyclin D1; Deoxyguanosine; DNA Damage; Drug Carriers; Drug Compounding; Fatty Acids, Monounsaturated; Female; Gene Expression Regulation, Neoplastic; HEK293 Cells; Humans; Indoles; Interleukin-10; Mice; Nanoparticles; Permeability; Proliferating Cell Nuclear Antigen; Proto-Oncogene Proteins c-myc; Quaternary Ammonium Compounds; Skin; Skin Neoplasms; Tumor Suppressor Protein p53; Ultraviolet Rays | 2016 |
Targeted nanoparticles deliver siRNA to melanoma.
Melanoma is a severe skin cancer that often leads to death. To examine the potential of small interfering RNA (siRNA) therapy for melanoma, we have developed anisamide-targeted nanoparticles that can systemically deliver siRNA into the cytoplasm of B16F10 murine melanoma cells, which express the sigma receptor. A c-Myc siRNA delivered by the targeted nanoparticles effectively suppressed c-Myc expression in the tumor and partially inhibited tumor growth. More significant tumor growth inhibition was observed with nanoparticles composed of N,N-distearyl-N-methyl-N-2-(N'-arginyl) aminoethyl ammonium chloride (DSAA), a guanidinium-containing cationic lipid, than with a commonly used cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Three daily injections of c-Myc siRNA formulated in the targeted nanoparticles containing DSAA could impair tumor growth, and the ED(50) of c-Myc siRNA was about 0.55 mg kg(-1). The targeted DSAA nanoparticles containing c-Myc siRNA sensitized B16F10 cells to paclitaxel (Taxol), resulting in a complete inhibition of tumor growth for 1 week. Treatments of c-Myc siRNA in the targeted nanoparticles containing DSAA also showed significant inhibition on the growth of MDA-MB-435 tumor. The enhanced anti-melanoma activity is probably related to the fact that DSAA, but not DOTAP, induced reactive oxygen species, triggered apoptosis, and downregulated antiapoptotic protein Bcl-2 in B16F10 melanoma cells. Thus, the targeted nanoparticles containing c-Myc siRNA may serve as an effective therapeutic agent for melanoma. Topics: Animals; Apoptosis; Cell Line, Tumor; Fatty Acids, Monounsaturated; Female; Genes, myc; Genetic Therapy; Humans; Liposomes; Melanoma; Mice; Mice, Inbred C57BL; Nanoparticles; Quaternary Ammonium Compounds; RNA, Small Interfering; Signal Transduction; Skin Neoplasms | 2010 |