1-2-dioleoyloxy-3-(trimethylammonium)propane has been researched along with Prostatic-Neoplasms* in 5 studies
5 other study(ies) available for 1-2-dioleoyloxy-3-(trimethylammonium)propane and Prostatic-Neoplasms
Article | Year |
---|---|
Assessment of a New Ginsenoside Rh2 Nanoniosomal Formulation for Enhanced Antitumor Efficacy on Prostate Cancer: An in vitro Study.
Ginsenoside Rh2, purified from the. The niosomal formulation contained Span 60 and cholesterol, and cationic lipid DOTAP was evaluated by determining particle size distribution, encapsulation efficiency, the polydispersity index (PDI), and surface morphology. The cytotoxic effects of free Ginsenoside Rh2 and Ginsenoside Rh2-loaded niosomes were determined using the MTT method in the PC3 prostate cancer cell line. For the investigation of the in vitro cellular uptake of Ginsenoside Rh2-loaded niosome, two formulations were prepared: the Ginsenoside Rh2-loaded niosomal formula containing 5% DOTAP and the Ginsenoside Rh2-loaded niosomal formula without DOTAP.. The mean size, DPI, zeta potential, and encapsulation efficiency of the Ginsenoside Rh2-loaded nanoniosomal formulation containing DOTAP were 93.5±2.1 nm, 0.203±0.01, +4.65±0.65, and 98.32% ±2.4, respectively. The niosomal vesicles were found to be round and have a smooth surface. The release profile of Ginsenoside Rh2 from niosome was biphasic. Furthermore, a two-fold reduction in the Ginsenoside Rh2 concentration was measured when Ginsenoside Rh2 was administered in a nanoniosomal form compared to free Ginsenoside Rh2 solutions in the PC3 prostate cancer cell line. After storage for 90 days, the encapsulation efficiency, vesicle size, PDI, and zeta potential of the optimized formulation did not significantly change compared to the freshly prepared samples. The cellular uptake experiments of the niosomal formulation demonstrated that by adding DOTAP to the niosomal formulation, the cellular uptake was enhanced.. The enhanced cellular uptake and cytotoxic activity of the Ginsenoside Rh2 nanoniosomal formulation on the PC3 cell make it an attractive candidate for application as a nano-sized delivery vehicle to transfer Ginsenoside Rh2 to cancer cells. Topics: Antineoplastic Agents; Cell Proliferation; Cell Survival; Cholesterol; Drug Compounding; Drug Liberation; Drug Screening Assays, Antitumor; Drugs, Chinese Herbal; Fatty Acids, Monounsaturated; Ginsenosides; Hexoses; Humans; Liposomes; Male; Panax; Particle Size; PC-3 Cells; Prostatic Neoplasms; Quaternary Ammonium Compounds; Tumor Cells, Cultured | 2020 |
The biological activity of cationic liposomes in drug delivery and toxicity test in animal models.
In the study we made use of DOTAP (1,2-dioleoyl-3-trimethylammonium), DOPE (1,2-dioleoyl-snglycero-3-phosphoethanolamine) and PEG-PE (polyethylene glycol- polyethylene) to make cationic PEG-liposomes by ultrasonic dispersion method. The plasmid pGPU6 combined with cationic PEG-liposomes or Liopofectamin 2000 was used to transfect PC3 cells to judge the transfection efficiency. HE staining showed that the pGUP6-shAurora B plasmid/liposomes complex could significantly inhibit tumor growth in mice tumor model. The results indicated that there was no remarkable difference between the homemade liposomes and Lipofectamin 2000 after transfection, with transfection efficiency over 80%. And the homemade liposomes also had high transfection efficiency in vivo. No significant side effects were observed on weight, coat condition, behavior or appetite and the life span of mice treated with pGPU6-shAurora B were extended. Beyond that, there were no differences in mortality or in pathological changes to the heart, liver, spleen, lungs and kidneys among all the mice. Topics: Animals; Aurora Kinase B; Cations; Cell Line, Tumor; Drug Delivery Systems; Fatty Acids, Monounsaturated; Female; Humans; Liposomes; Male; Mice, Inbred BALB C; Particle Size; Phosphatidylethanolamines; Polyethylene Glycols; Prostatic Neoplasms; Quaternary Ammonium Compounds; RNA, Small Interfering; Transfection; Xenograft Model Antitumor Assays | 2016 |
Therapeutic effects of survivin dominant negative mutant in a mouse model of prostate cancer.
Patients with localized prostate cancer can usually achieve initial response to conventional treatment. However, most of them will inevitably progress to advanced disease stage. There is a clear need to develop innovative and effective therapeutics for prostate cancer. Mouse survivin T34A (mS-T34A) is a phosphorylation-defective Thr34 → Ala dominant negative mutant, which represents a potential promising target for cancer gene therapy. This study was designed to determine whether mS-T34A plasmid encapsuled by DOTAP-chol liposome (Lip-mS) has the anti-tumor activity against prostate cancer, if so, to further investigate the possible mechanisms.. In vitro, TRAMP-C1 cells were transfected with Lip-mS and examined for apoptosis by PI staining and flow cytometric analysis. In vivo, subcutaneous prostate cancer models were established in C57BL/6 mice, which were randomly assigned into three groups to receive i.v. administrations of Lip-mS, pVITRO2-null plasmid complexed with DOTAP-chol liposome (Lip-null) or normal saline every 2 days for eight doses. Tumor volume was measured. Tumor tissues were inspected for apoptosis by TUNEL assay. Microvessel density (MVD) was determined by CD31 immunohistochemistry. Alginate-encapsulated tumor cell test was conducted to evaluate the treatment effect on angiogenesis.. Administration of Lip-mS resulted in significant inhibition in the growth of mouse TRAMP-C1 tumors. The anti-tumor response was associated with increased tumor cell apoptosis and decreased microvessel density.. The present study may be of importance in the exploration of the potential application of Lip-mS in the treatment of a broad spectrum of tumors. Topics: Animals; Cell Line, Tumor; Fatty Acids, Monounsaturated; Genetic Therapy; Inhibitor of Apoptosis Proteins; Liposomes; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microscopy, Fluorescence; Mutation; Prostatic Neoplasms; Quaternary Ammonium Compounds; Repressor Proteins; Survivin | 2011 |
Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging.
Application of superparamagnetic iron oxide nanoparticles (SPIOs) as the contrast agent has improved the quality of magnetic resonance (MR) imaging. Low efficiency of loading the commercially available iron oxide nanoparticles into cells and the cytotoxicity of previously formulated complexes limit their usage as the image probe. Here, we formulated new cationic lipid nanoparticles containing SPIOs feasible for in vivo imaging.. Hydrophobic SPIOs were incorporated into cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and polyethylene-glycol-2000-1,2-distearyl-3-sn-phosphatidylethanolamine (PEG-DSPE) based micelles by self-assembly procedure to form lipid-coated SPIOs (L-SPIOs). Trace amount of Rhodamine-dioleoyl-phosphatidylethanolamine (Rhodamine-DOPE) was added as a fluorescent indicator. Particle size and zeta potential of L-SPIOs were determined by Dynamic Light Scattering (DLS) and Laser Doppler Velocimetry (LDV), respectively. HeLa, PC-3 and Neuro-2a cells were tested for loading efficiency and cytotoxicity of L-SPIOs using fluorescent microscopy, Prussian blue staining and flow cytometry. L-SPIO-loaded CT-26 cells were tested for in vivo MR imaging.. The novel formulation generates L-SPIOs particle with the average size of 46 nm. We showed efficient cellular uptake of these L-SPIOs with cationic surface charge into HeLa, PC-3 and Neuro-2a cells. The L-SPIO-loaded cells exhibited similar growth potential as compared to unloaded cells, and could be sorted by a magnet stand over ten-day duration. Furthermore, when SPIO-loaded CT-26 tumor cells were injected into Balb/c mice, the growth status of these tumor cells could be monitored using optical and MR images.. We have developed a novel cationic lipid-based nanoparticle of SPIOs with high loading efficiency, low cytotoxicity and long-term imaging signals. The results suggested these newly formulated non-toxic lipid-coated magnetic nanoparticles as a versatile image probe for cell tracking. Topics: Adenocarcinoma; Animals; Cations; Cell Differentiation; Cell Line, Tumor; Colorectal Neoplasms; Contrast Media; Fatty Acids, Monounsaturated; Feasibility Studies; Ferric Compounds; HeLa Cells; Humans; Hydrophobic and Hydrophilic Interactions; Magnetic Resonance Imaging; Male; Metal Nanoparticles; Mice; Mice, Inbred BALB C; Micelles; Neuroblastoma; Particle Size; Phosphatidylethanolamines; Polyethylene Glycols; Prostatic Neoplasms; Quaternary Ammonium Compounds; Rhodamines | 2009 |
Neomycin improves cationic lipid-mediated transfection of DNA in human cells.
Delivery of oligonucleotides has been a major impediment in the development of nucleic acid based drugs. In this report, we show that neomycin, an aminoglycoside antibiotic, when combined with a cationic lipid preparation such as DOTAP, enhances transfection efficiency of both reporter plasmids and oligonucleotides and results in a significant increase in transgene expression. The results described here open a new lead in ongoing efforts for oligonucleotide delivery. Topics: Carbohydrate Sequence; Cations; Cell Line, Tumor; DNA; Drug Delivery Systems; Fatty Acids, Monounsaturated; Humans; Lipids; Male; Molecular Sequence Data; Molecular Structure; Neomycin; Prostatic Neoplasms; Quaternary Ammonium Compounds; Transfection | 2005 |