1-1-diethyl-2-hydroxy-2-nitrosohydrazine and Hypoxia

1-1-diethyl-2-hydroxy-2-nitrosohydrazine has been researched along with Hypoxia* in 2 studies

Other Studies

2 other study(ies) available for 1-1-diethyl-2-hydroxy-2-nitrosohydrazine and Hypoxia

ArticleYear
Pulmonary vasodilator responses to sodium nitrite are mediated by an allopurinol-sensitive mechanism in the rat.
    American journal of physiology. Heart and circulatory physiology, 2009, Volume: 296, Issue:2

    Recent studies show that pulmonary vasodilator responses to nitrite are enhanced by hypoxia. However, the mechanism by which nitrite is converted to vasoactive nitric oxide (NO) is uncertain. In the present study, intravenous injections of sodium nitrite decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressure were enhanced when tone in the pulmonary vascular bed was increased with U-46619. Under elevated tone conditions, decreases in pulmonary and systemic arterial pressures in response to nitrite were attenuated by allopurinol in a dose that did not alter responses to the NO donors, sodium nitroprusside and diethylamine/NO, suggesting that xanthine oxidoreductase is the major enzyme-reducing nitrite to NO. Ventilation with a 10% O(2) gas mixture increased pulmonary arterial pressure, and the response to hypoxia was enhanced by N(G)-nitro-l-arginine methyl ester and not altered by allopurinol. This suggests that NO formed by the endothelium and not from the reduction of plasma nitrite modulates the hypoxic pulmonary vasoconstrictor response. Although intravenous injections of sodium nitrite reversed pulmonary hypertensive responses to U-46619, hypoxia, and N(G)-nitro-l-arginine methyl ester, the pulmonary vasodilator response to nitrite was not altered by ventilation with 10% O(2) when baseline pulmonary arterial pressure was increased to similar values in animals breathing room air or the hypoxic gas. These data provide evidence that xanthine oxidoreductase is the major enzyme-reducing nitrite to vasoactive NO, and that this mechanism is not modified by hypoxia.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Allopurinol; Animals; Blood Pressure; Cardiac Output; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hydrazines; Hypoxia; Injections, Intravenous; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroprusside; Oxypurinol; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Sodium Nitrite; Time Factors; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents; Xanthine Oxidase

2009
Hypoxia modulates nitric oxide-induced regulation of NMDA receptor currents and neuronal cell death.
    The American journal of physiology, 1999, Volume: 277, Issue:4

    Nitric oxide (NO) released from a new chemical class of donors enhances N-methyl-D-aspartate (NMDA) channel activity. Using whole cell and single-channel patch-clamp techniques, we have shown that (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]-NO (PAPA-NO) and diethylamine NO, commonly termed NONOates, potentiate the glutamate-mediated response of recombinant rat NMDA receptors (NR1/NR2A) expressed in HEK-293 cells. The overall effect is an increase in both peak and steady-state whole cell currents induced by glutamate. Single-channel studies demonstrate a significant increase in open probability but no change in the mean single-channel open time or mean channel conductance. Reduction in oxygen levels increased and prolonged the PAPA-NO-induced change in both peak and steady-state glutamate currents in transfected HEK cells. PAPA-NO also enhanced cell death in primary cultures of rodent cortical neurons deprived of oxygen and glucose. This potentiation of neuronal injury was blocked by MK-801, indicating a critical involvement of NMDA receptor activation. The NO-induced increase in NMDA channel activity as well as NMDA receptor-mediated cell death provide firm evidence that NO modulates the NMDA channel in a manner consistent with both a physiological role under normoxic conditions and a pathophysiological role under hypoxic conditions.

    Topics: Animals; Cell Death; Cell Line; Electric Conductivity; Glutamic Acid; Humans; Hydrazines; Hypoxia; Mice; Mice, Inbred Strains; Neurons; Nitric Oxide; Nitrogen Oxides; Oxygen; Partial Pressure; Rats; Receptors, N-Methyl-D-Aspartate; Recombinant Proteins

1999