1-(4-(6-bromobenzo(1-3)dioxol-5-yl)-3a-4-5-9b-tetrahydro-3h-cyclopenta(c)quinolin-8-yl)ethanone and Endometrial-Neoplasms

1-(4-(6-bromobenzo(1-3)dioxol-5-yl)-3a-4-5-9b-tetrahydro-3h-cyclopenta(c)quinolin-8-yl)ethanone has been researched along with Endometrial-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for 1-(4-(6-bromobenzo(1-3)dioxol-5-yl)-3a-4-5-9b-tetrahydro-3h-cyclopenta(c)quinolin-8-yl)ethanone and Endometrial-Neoplasms

ArticleYear
G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines.
    Steroids, 2013, Volume: 78, Issue:11

    The G protein-coupled estrogen receptor (GPER, GPR30) is suggested to be involved in non-nuclear estrogen signaling and is expressed in a variety of hormone dependent cancer entities. This study was performed to further elucidate the role of this receptor in endometrial adenocarcinoma. We first analyzed GPER expression at the mRNA level in 88 endometrial cancer or normal endometrial tissue samples and compared it to those of nuclear steroid hormone receptors. GPER transcript levels were found to be about 6-fold reduced, but still present in endometrial cancer. Expression of this receptor was decreased in all grading subgroups when compared to pre- or postmenopausal endometrium. GPER mRNA expression was associated with PR mRNA levels (Spearman's rho 0.4610, p<0.001). We then tested the effect of the GPER ligand G-1 on growth of three endometrial cancer cell lines with different GPER expression. GPER protein levels were highest in RL95-2 cells, moderate in HEC-1A cells and not detectable in HEC-1B cells. The moderate expression level in HEC-1A cells was similar to average tumor tissue expression. Treatment with G-1 significantly inhibited growth of the GPER-positive cell lines RL95-2 and HEC-1A in a dose-dependent manner, whereas the GPER-negative line HEC-1B was not affected. Though GPER transcript levels were found to be reduced in endometrial cancer, our in vitro data suggest that moderate GPER expression might be sufficient to mediate growth-inhibitory effects triggered by its agonist G-1.

    Topics: Adenocarcinoma; Adult; Cell Line, Tumor; Cell Proliferation; Cyclopentanes; Endometrial Neoplasms; Endometrium; Estrogen Receptor alpha; Female; Gene Expression Regulation, Neoplastic; Humans; Membrane Proteins; Middle Aged; PTEN Phosphohydrolase; Quinolines; Receptors, Estrogen; Receptors, G-Protein-Coupled; Receptors, Progesterone; RNA, Messenger

2013
Synthesis and characterization of iodinated tetrahydroquinolines targeting the G protein-coupled estrogen receptor GPR30.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ER alpha/beta and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC(50) values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with (125)I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal, and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally related differences in the pharmacokinetic profiles, target tissue uptake, and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands and suggests that further optimization of this parameter may lead to improved targeting characteristics.

    Topics: Animals; Binding, Competitive; Calcium; Chlorocebus aethiops; COS Cells; Endometrial Neoplasms; Enzyme Activation; Estrogens; Female; Humans; Iodine Radioisotopes; Mice; Mice, Nude; Phosphatidylinositol 3-Kinases; Quinolines; Receptors, Estrogen; Receptors, G-Protein-Coupled

2010