1-(3-4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine-dihydrochloride has been researched along with Amnesia* in 5 studies
2 review(s) available for 1-(3-4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine-dihydrochloride and Amnesia
Article | Year |
---|---|
Behavioral pharmacology of sigma-ligands.
Sigma (sigma) receptors, first defined as a subclass of opioid receptors, later confounded with the high affinity phencyclidine (PCP) binding sites, now are regarded as unique binding sites, distinct from opiate and PCP receptors, and related to higher brain function. The investigation of functional significance of sigma receptors in the brain has been hampered for many years by relative lack of specific tool drugs and by the unavailability of their coherent classification into postulated agonists and antagonists. However, a potential involvement of sigma receptors in psychotic disorders was first suggested soon after their discovery. The sigma receptors are classified into two subtypes, sigma (1) and sigma (2) receptors, of which the first was recently cloned from rodent and human tissues while the second has not yet been fully characterized. Although the precise mechanism of the functional response of these receptors is still uncertain, it is accepted that sigma receptors can modulate a number of central neurotransmitter systems, including noradrenergic, glutamatergic and dopaminergic ones. The sigma receptors have been postulated to be involved in numerous pharmacological and physiological functions, including motor disorders, psychotic disorders, neuroprotective mechanisms. In the last years, a number of compounds with a high affinity and selectivity for sigma binding sites have been discovered and investigated for their therapeutic potential. In this review, we try to summarize the behavioral effects of sigma receptor ligands that have been described, and their activity in animal models related to some brain disorders, especially schizophrenia and affective disorders. Topics: Amnesia; Animals; Antidepressive Agents; Cinnamates; Cocaine-Related Disorders; Cyclopropanes; Disease Models, Animal; Drug Interactions; Humans; Hypericum; Ligands; Nootropic Agents; Piperazines; Plant Extracts; Psychopharmacology; Psychotic Disorders; Quinolones; Receptors, sigma; Steroids | 2004 |
[Anti-amnesic effects of sigma (sigma)-receptor agonists].
Both traditional and novel sigma (sigma)-receptor agonists have been reported to possess anti-amnesic effects in rodents. In particular, the anti-amnesic effects induced by the novel sigma1-receptor agonists, such as (+)-pentazocine, SA4503 and PRE-084, were shown in beta amyloid-peptide-induced, basal forebrain (BF)-lesioned and carbon monoxide (CO)-induced amnesia models and senescence-accelerated mouse (SAM). In addition, these sigma1-receptor agonists have good profiles for the central acetylcholine and dopamine systems. Moreover, they also have neuroprotective and anti-depressive effects. These evidence suggested that the sigma1-receptor agonists may be promising compounds for the treatment of dementing disorders such as Alzheimer's disease, senile dementia and vascular dementia. However, the sigma-receptor family is still considered to be enigmatic molecular targets. More molecular cloning and biochemical studies on the sigma-receptor family are needed. Topics: Acetylcholine; Amnesia; Animals; Disease Models, Animal; Dopamine; Ligands; Mice; Morpholines; Pentazocine; Phenazocine; Piperazines; Receptors, sigma; Sigma-1 Receptor | 1999 |
3 other study(ies) available for 1-(3-4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine-dihydrochloride and Amnesia
Article | Year |
---|---|
The anti-amnesic effects of sigma1 (sigma1) receptor agonists confirmed by in vivo antisense strategy in the mouse.
The sigma1 (sigma1) receptor cDNA was recently cloned in several animal species, including the mouse. In order to firmly establish the implication of sigma1 receptors in memory, a phosphorothioate-modified antisense oligodeoxynucleotide (aODN) targeting the sigma1 receptor mRNA and a mismatched analog (mODN) were administered intracerebroventricularly for 3 days in mice. Scatchard analyses of in vitro (+)-[3H]SKF-10,047 binding to sigma1 sites showed that Bmax values were significantly decreased in the hippocampus (-58.5%) and cortex (-38.1%), but not in the cerebellum, of aODN treated mice, as compared to saline- or mODN-treated animals. In vivo binding levels were also significantly decreased after aODN treatment in the hippocampus and cortex but not in the cerebellum. The anti-amnesic effects of the selective sigma1 agonists PRE-084 or SA4503 were evaluated against the learning impairments induced by dizocilpine or scopolamine, respectively, using spontaneous alternation behavior and passive avoidance task. The anti-amnesic effects of PRE-084 or SA4503, observed after saline- or mODN-treatment, were blocked after aODN administration. These observations bring a molecular basis to the modulatory role of sigma1 receptors in memory processes. Topics: Amnesia; Animals; Brain; Dizocilpine Maleate; Excitatory Amino Acid Agonists; In Vitro Techniques; Learning Disabilities; Male; Maze Learning; Mice; Morpholines; Nootropic Agents; Oligonucleotides, Antisense; Phenazocine; Piperazines; Receptors, sigma | 2001 |
Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism.
The sigma1 (sigma 1) receptor agonists exert potent anti-amnesic effects, as they apparently block the learning impairments either induced by the muscarinic receptor antagonist scopolamine, the N-methyl-D-aspartate receptor antagonist dizocilpine or inherently due to the age-related deficits in senescence-accelerated mice. We recently described the amnesia induced by the beta-amyloid-related peptide beta 25-35, administered centrally in an aggregated form, in mice. The deficits were sensitive to cholinomimetics or to N-methyl-D-aspartate/glycine modulatory site agonists. Herein, we examined the effects of sigma 1 receptor ligands on the beta 25-35 peptide-induced amnesia. The effects of neuro(active) steroids, which interact in vitro and in vivo with sigma 1 receptors were examined in parallel. Mnesic capacity was evaluated seven days after administration of aggregated beta 25-35 peptide (3 nmol), using spontaneous alternation in the Y-maze for spatial short-term memory, or after 14 days, using the step-down type passive avoidance test for long-term memory. The sigma 1 receptor agonists (+)-pentazocine, PRE-084, or SA4503 attenuated, in a dose-dependent and bell-shaped manner, the beta 25-35 peptide-induced deficits on both tests. These effects were antagonized by haloperidol or BMY-14802, confirming the sigma 1 receptor pharmacology. Pregnenolone, dehydroepiandrosterone, and their sulphate esters, but not progesterone, also dose-dependently attenuated the beta 25-35 peptide-induced deficits. Progesterone blocked the beneficial effects of each other neurosteroid, behaving as an antagonist. Furthermore, haloperidol blocked the effects induced by neurosteroids, whereas progesterone antagonized the effects of the non-steroidal sigma 1 receptor agonists, showing a clear crossed pharmacology of different drug classes. These results demonstrate that: (i) the anti-amnesic effect of sigma 1 receptor agonists may be of therapeutic relevance in pathological states affecting the cholinergic and/or glutamatergic systems, such as in pathological aging; (ii) neurosteroids play an important role in learning processes and may collectively constitute a therapeutic target; (iii) the interaction between sigma 1 systems and neurosteroids appears indeed of behavioural relevance. Topics: Amnesia; Amyloid beta-Peptides; Analgesics, Opioid; Animals; Antipsychotic Agents; Avoidance Learning; Dehydroepiandrosterone; Haloperidol; Injections, Intraventricular; Male; Mice; Morpholines; Pentazocine; Peptide Fragments; Piperazines; Pregnenolone; Progesterone; Receptors, sigma | 1998 |
SA4503, a novel cognitive enhancer with sigma1 receptor agonist properties, facilitates NMDA receptor-dependent learning in mice.
The selective sigma1 receptor agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenyl propyl)piperazine dihydrochloride (SA4503) was reported to reverse the amnesia induced by the muscarinic receptor antagonist scopolamine at sub-mg/kg doses. We examined its effect on the learning impairment induced in mice by the non-competitive NMDA receptor antagonist dizocilpine. Learning capacities were evaluated using spontaneous alternation in the Y-maze for spatial working memory, and step-down type passive avoidance. SA4503 (0.03-1 mg/kg s.c.) attenuated the dizocilpine (0.15 mg/kg i.p.)-induced memory deficits following a bell-shaped curve in both tests. These effects of SA4503 were blocked by haloperidol (0.05 mg/kg i.p.), implicating sigma1 receptors. SA4503 also reversed the alternation deficit induced by N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg i.p.) at the same dosage, indicating that it acted on working memory through the nitric oxide (NO)-mediated signalling pathway. Furthermore, progesterone (2 mg/kg s.c.) blocked the SA4503 effects in the dizocilpine- and L-NAME-amnesia models, in accordance with the purported neurosteroids/sigma1 receptors interaction. These results demonstrate a promising neurobehavioural profile of SA4503, a ligand equally efficient to reverse the deficit in the glutamatergic as well as in the cholinergic amnesia model. Pertinent informations on the potential mechanism of the anti-amnesic effects of sigma1 receptor ligands were also obtained. Topics: Amnesia; Analysis of Variance; Animals; Avoidance Learning; Cognition; Disease Models, Animal; Dizocilpine Maleate; Dopamine Antagonists; Drug Interactions; Excitatory Amino Acid Antagonists; Haloperidol; Injections, Intraperitoneal; Injections, Subcutaneous; Male; Maze Learning; Mice; NG-Nitroarginine Methyl Ester; Nitric Oxide; Piperazines; Progesterone; Receptors, N-Methyl-D-Aspartate; Receptors, sigma; Spatial Behavior | 1997 |