1-(1-(1-methylcyclooctyl)-4-piperidinyl)-2-((3r)-3-piperidinyl)-1h-benzimidazole has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for 1-(1-(1-methylcyclooctyl)-4-piperidinyl)-2-((3r)-3-piperidinyl)-1h-benzimidazole and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Modulation of the NOP receptor signaling affects resilience to acute stress.
The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) are implicated in the modulation of emotional states. Previous human and rodent findings support NOP antagonists as antidepressants. However, the role played by the N/OFQ-NOP receptor system in resilience to stress is unclear.. The present study investigated the effects of activation or blockade of NOP receptor signaling before exposure to acute stress.. The behavioral effects of the administration before stress of the NOP agonists Ro 65-6570 (0.01-1 mg/kg) and MCOPPB (0.1-10 mg/kg), and the NOP antagonist SB-612111 (1-10 mg/kg) were assessed in mice exposed to inescapable electric footshock and forced swim as stressors. The behavioral phenotype of mice lacking the NOP receptor (NOP(-/-)) exposed to inescapable electric footshock was also investigated.. The activation of NOP receptor signaling with the agonists increased the percentage of mice developing helpless behavior and facilitated immobile posture. In contrast, the blockade of NOP receptor reduced the acquisition of depressive-like phenotypes, and similar resistance to develop helpless behaviors was observed in NOP(-/-) mice. Under the same stressful conditions, the antidepressant nortriptyline (20 mg/kg) did not change the acquisition of helpless behavior and immobile posture.. These findings support the view that NOP activation during acute stress facilitates the development of depressive-related behaviors, whereas NOP blockade has a protective outcome. This study showed for first time that NOP antagonists are worthy of investigation as preemptive treatments in patients with severe risk factors for depression. Topics: Animals; Behavior, Animal; Benzimidazoles; Cycloheptanes; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Imidazoles; Male; Mice; Mice, Knockout; Nociceptin; Nociceptin Receptor; Nortriptyline; Opioid Peptides; Piperidines; Receptors, Opioid; Resilience, Psychological; Spiro Compounds; Stress, Psychological | 2019 |