(melle-4)cyclosporin has been researched along with Mitochondrial-Diseases* in 3 studies
3 other study(ies) available for (melle-4)cyclosporin and Mitochondrial-Diseases
Article | Year |
---|---|
NIM811 prevents mitochondrial dysfunction, attenuates liver injury, and stimulates liver regeneration after massive hepatectomy.
Massive hepatectomy (MHX) leads to failure of remnant livers. Excessive metabolic burden in remnant livers may cause mitochondrial dysfunction. This study investigated whether blockade of the mitochondrial permeability transition (MPT) with N-methyl-4-isoleucine cyclosporine (NIM811) improves the outcome of MHX.. Mice were gavaged with NIM811 (10 mg/kg before surgery and 5 mg/kg daily afterward) and underwent sham-operation or approximately 90% partial hepatectomy.. Serum alanine aminotransferase, necrosis, and apoptosis increased, respectively, to approximately 1200 U/L, 6.1%, and 7% after MHX. NIM811 decreased peak alanine aminotransferase release, necrosis, and apoptosis by 70%, 100%, and 42%, respectively. 5-Bromo-2'-deoxyuridine incorporation, proliferating cell nuclear antigen expression, and the remnant liver weights were all increased significantly by NIM811 treatment, indicating improved liver regeneration. NIM811 also blunted hyperbilirubinemia by 54%, increased serum albumin by 51%, and improved survival from 6% to 40% after MHX. Hepatic mitochondrial depolarization, cell death, and MPT were detected by intravital confocal/multiphoton microscopy of rhodamine 123, propidium iodide, and calcein. Mitochondrial depolarization occurred in many viable hepatocytes (13 cells/high-power field), and nonviable hepatocytes increased slightly to approximately 1 cell/high-power field at 3 hr after MHX. Entry of calcein into mitochondria after MHX indicated MPT onset. Importantly, NIM811 decreased mitochondria depolarization by more than 60%, blocked MPT onset, and prevented cell death. Decreases of hepatic ATP, mitochondrial cytochrome c release, and caspase-3 activation after MHX were also partially blocked by NIM811.. NIM811 minimized liver injury and improved liver regeneration after MHX, at least in part, by preventing MPT onset and subsequent compromised energy supply and proapoptotic cytochrome c release. Topics: Adenosine Triphosphate; Alanine Transaminase; Animals; Caspase 3; Cell Death; Cyclosporine; Cytochromes c; Fluoresceins; Hepatectomy; Liver; Liver Regeneration; Male; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Mitochondrial Diseases; Organ Size; Proliferating Cell Nuclear Antigen | 2011 |
Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog.
Following traumatic brain injury (TBI), mitochondrial function becomes compromised. Mitochondrial dysfunction is characterized by intra-mitochondrial Ca(2+) accumulation, induction of oxidative damage, and mitochondrial permeability transition (mPT). Experimental studies show that cyclosporin A (CsA) inhibits mPT. However, CsA also inhibits calcineurin. In the present study, we conducted a dose-response analysis of NIM811, a non-calcineurin inhibitory CsA analog, on mitochondrial dysfunction following TBI in mice, and compared the effects of the optimal dose of NIM811 (10 mg/kg i.p.) against an optimized dose of CsA (20 mg/kg i.p.). Male CF-1 mice were subjected to severe TBI utilizing the controlled cortical impact model. Mitochondrial respiration was assessed from animals treated with either NIM811, CsA, or vehicle 15 min post-injury. The respiratory control ratio (RCR) of mitochondria from vehicle-treated animals was significantly (p<0.01) lower at 3 or 12 h post-TBI, relative to shams. Treatment of animals with either NIM811 or CsA significantly (p<0.03) attenuated this reduction. Consistent with this finding, both NIM811 and CsA significantly reduced lipid peroxidative and protein nitrative damage to mitochondria at 12 h post-TBI. These results showing the ability of NIM811 to fully duplicate the mitochondrial protective efficacy of CsA supports the conclusion that inhibition of the mPT may be sufficient to explain CsA's protective effects. Topics: Acute Disease; Aldehydes; Animals; Biomarkers; Brain Injuries; Cyclosporine; Dose-Response Relationship, Drug; Immunoblotting; Lipid Peroxidation; Male; Mice; Mitochondrial Diseases; Oxidative Stress; Oxygen Consumption; Structure-Activity Relationship; Tyrosine | 2008 |
Minocycline and N-methyl-4-isoleucine cyclosporin (NIM811) mitigate storage/reperfusion injury after rat liver transplantation through suppression of the mitochondrial permeability transition.
Graft failure after liver transplantation may involve mitochondrial dysfunction. We examined whether prevention of mitochondrial injury would improve graft function. Orthotopic rat liver transplantation was performed after 18 hours' cold storage in University of Wisconsin solution and treatment with vehicle, minocycline, tetracycline, or N-methyl-4-isoleucine cyclosporin (NIM811) of explants and recipients. Serum alanine aminotransferase (ALT), necrosis, and apoptosis were assessed 6 hours after implantation. Mitochondrial polarization and cell viability were assessed by intravital microscopy. Respiration and the mitochondrial permeability transition (MPT) were assessed in isolated rat liver mitochondria. After transplantation with vehicle or tetracycline, ALT increased to 5242 U/L and 4373 U/L, respectively. Minocycline and NIM811 treatment decreased ALT to 2374 U/L and 2159 U/L, respectively (P < 0.01). Necrosis and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) also decreased from 21.4% and 21 cells/field, respectively, after vehicle to 10.1% and 6 cells/field after minocycline and to 8.7% and 5.2 cells/field after NIM811 (P < 0.05). Additionally, minocycline decreased caspase-3 activity in graft homogenates (P < 0.05). Long-term graft survival was 27% and 33%, respectively, after vehicle and tetracycline treatment, which increased to 60% and 70% after minocycline and NIM811 (P < 0.05). In isolated mitochondria, minocycline and NIM811 but not tetracycline blocked the MPT. Minocycline blocked the MPT by decreasing mitochondrial Ca(2+) uptake, whereas NIM811 blocks by interaction with cyclophilin D. Intravital microscopy showed that minocycline and NIM811 preserved mitochondrial polarization and cell viability after transplantation (P < 0.05).. Minocycline and NIM811 attenuated graft injury after rat liver transplantation and improved graft survival. Minocycline and/or NIM811 might be useful clinically in hepatic surgery and transplantation. Topics: Adenosine Diphosphate; Alanine Transaminase; Animals; Anti-Bacterial Agents; Apoptosis; Calcium; Cyclosporine; Graft Survival; Liver; Liver Transplantation; Male; Minocycline; Mitochondria; Mitochondrial Diseases; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Necrosis; Rats; Rats, Inbred Lew; Reperfusion Injury; Tetracycline | 2008 |