(E)-2-3-5-4--tetrahydroxystilbene-2-O-beta-D-glucoside has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 2 studies
2 other study(ies) available for (E)-2-3-5-4--tetrahydroxystilbene-2-O-beta-D-glucoside and Chemical-and-Drug-Induced-Liver-Injury
Article | Year |
---|---|
2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside enhances the hepatotoxicity of emodin in vitro and in vivo.
Herb-induced liver injury results from the interplay between the herb and host with the herbal components serving as the major origin for hepatotoxicity. Although Polygoni Multiflori Radix (PMR) has been frequently reported to induce liver injury, contributions of its major components such as emodin, emodin-8-O-β-D-glucopyranoside, physcion and 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) towards its hepatotoxicity have not been clearly identified. Our initial cytotoxicity screenings of the major PMR components using rat hepatocytes identified emodin as the most toxic. Subsequently, the bile acid homeostasis-related mechanisms of emodin and its combination treatment with TSG in PMR-associated liver injury were explored in sandwich-cultured rat hepatocytes (SCRH) and verified in rats. In SCRH, emodin was found to be able to induce total bile acid accumulation in a dose-dependent manner. In both SCRH and rats, the presence of TSG significantly enhanced the hepatotoxicity of emodin via i) increasing its hepatic exposure by inhibiting its glucuronidation mediated metabolism; ii) enhancing its disruption on bile acid homeostasis through amplifying its inhibition on bile acid efflux transporters and its up-regulation on bile acids synthesis enzymes; iii) enhancing its apoptosis. Our study for the first time demonstrated the critical role of the combination treatment with emodin and TSG in PMR-induced liver injury. Topics: Animals; Bile Acids and Salts; Chemical and Drug Induced Liver Injury; Chemical and Drug Induced Liver Injury, Chronic; Drug-Related Side Effects and Adverse Reactions; Emodin; Glucosides; Rats; Stilbenes | 2022 |
Pharmacokinetic studies unveiled the drug-drug interaction between trans-2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucopyranoside and emodin that may contribute to the idiosyncratic hepatotoxicity of Polygoni Multiflori Radix.
Polygoni Multiflori Radix (PMR) has been a reputable tonifying traditional Chinese medicine for a long history. However, clinical side effects regarding its idiosyncratic hepatotoxicity are occasionally reported. The containing anthraquinones, particularly emodin, could cause liver injury in both in vitro and in vivo experiments. It is well-known that some compounds could influence other compounds' pharmacokinetic parameters significantly. In this work, the influence of trans-2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucopyranoside (TSG) on the pharmacokinetic behavior of emodin in rats was evaluated by an ultra-high performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC/MS-MS) approach. Pharmacokinetic parameters of emodin, PMR extract, and TSG-free PMR extract (prepared by a component "knock-out" strategy with TSG eliminated), in rats after one-day and seven-day administration were determined and compared. We found that, after seven-day administration of the whole PMR extract (rather than TSG-free extract), emodin in rats was accumulated. And accordingly, the exposure of emodin in rats pre-treated with single TSG for seven days could be significantly enhanced. The results indicate that TSG was able to accelerate the exposure and metabolism of emodin. The effect of TSG on the metabolic activities of cytochrome P450 enzymes was further assessed by an LC-MS cocktail method. The accelerated exposure and metabolism of emodin could result from the up-regulation activity of CYP450s, in particular CYP1A2 isozyme. The findings obtained in this work firstly unveiled DDI between TSG and emodin in the administration of PMR, thus may provide a basis for unveiling the underlying mechanism of PMR-induced liver injury. Topics: Administration, Oral; Animals; Chemical and Drug Induced Liver Injury; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP1A2; Disease Models, Animal; Drug Interactions; Drugs, Chinese Herbal; Emodin; Glucosides; Humans; Male; Plant Roots; Polygonum; Rats; Rats, Sprague-Dawley; Stilbenes; Tandem Mass Spectrometry | 2019 |