(5-(2-4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2-3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol has been researched along with Disease-Models--Animal* in 11 studies
11 other study(ies) available for (5-(2-4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2-3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol and Disease-Models--Animal
Article | Year |
---|---|
Preclinical efficacy of dual mTORC1/2 inhibitor AZD8055 in renal cell carcinoma harboring a TFE3 gene fusion.
Renal cell carcinomas (RCC) harboring a TFE3 gene fusion (TfRCC) represent an aggressive subset of kidney tumors. Key signaling pathways of TfRCC are unknown and preclinical in vivo data are lacking. We investigated Akt/mTOR pathway activation and the preclinical efficacy of dual mTORC1/2 versus selective mTORC1 inhibition in TfRCC.. Levels of phosphorylated Akt/mTOR pathway proteins were compared by immunoblot in TfRCC and clear cell RCC (ccRCC) cell lines. Effects of the mTORC1 inhibitor, sirolimus, and the dual mTORC1/2 inhibitor, AZD8055, on Akt/mTOR activation, cell cycle progression, cell viability and cytotoxicity were compared in TfRCC cells. TfRCC xenograft tumor growth in mice was evaluated after 3-week treatment with oral AZD8055, intraperitoneal sirolimus and respective vehicle controls.. The Akt/mTOR pathway was activated to a similar or greater degree in TfRCC than ccRCC cell lines and persisted partly during growth factor starvation, suggesting constitutive activation. Dual mTORC1/2 inhibition with AZD8055 potently inhibited TfRCC viability (IC50 = 20-50 nM) due at least in part to cell cycle arrest, while benign renal epithelial cells were relatively resistant (IC50 = 400 nM). Maximal viability reduction was greater with AZD8055 than sirolimus (80-90% versus 30-50%), as was the extent of Akt/mTOR pathway inhibition, based on significantly greater suppression of P-Akt (Ser473), P-4EBP1, P-mTOR and HIF1α. In mouse xenograft models, AZD8055 achieved significantly better tumor growth inhibition and prolonged mouse survival compared to sirolimus or vehicle controls.. Akt/mTOR activation is common in TfRCC and a promising therapeutic target. Dual mTORC1/2 inhibition suppresses Akt/mTOR signaling more effectively than selective mTORC1 inhibition and demonstrates in vivo preclinical efficacy against TFE3-fusion renal cell carcinoma. Topics: Animals; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Carcinoma, Renal Cell; Cell Cycle; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Humans; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Mice; Morpholines; Proto-Oncogene Proteins c-akt; Signal Transduction; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2019 |
Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis.
The mechanistic target of rapamycin complex 2 (mTORC2) is a potentially novel and promising anticancer target due to its critical roles in proliferation, apoptosis, and metabolic reprogramming of cancer cells. However, the activity and function of mTORC2 in distinct cells within malignant tissue in vivo is insufficiently explored. Surprisingly, in primary human and mouse colorectal cancer (CRC) samples, mTORC2 signaling could not be detected in tumor cells. In contrast, only macrophages in tumor-adjacent areas showed mTORC2 activity, which was downregulated in stromal macrophages residing within human and mouse tumor tissues. Functionally, inhibition of mTORC2 by specific deletion of Rictor in macrophages stimulated tumorigenesis in a colitis-associated CRC mouse model. This phenotype was driven by a proinflammatory reprogramming of mTORC2-deficient macrophages that promoted colitis via the cytokine SPP1/osteopontin to stimulate tumor growth. In human CRC patients, high SPP1 levels and low mTORC2 activity in tumor-associated macrophages correlated with a worsened clinical prognosis. Treatment of mice with a second-generation mTOR inhibitor that inhibits mTORC2 and mTORC1 exacerbated experimental colorectal tumorigenesis in vivo. In conclusion, mTORC2 activity is confined to macrophages in CRC and limits tumorigenesis. These results suggest activation but not inhibition of mTORC2 as a therapeutic strategy for colitis-associated CRC. Topics: Animals; Carcinogenesis; Cell Line, Tumor; Cell Proliferation; Cells, Cultured; Colitis, Ulcerative; Colon; Colorectal Neoplasms; Dextran Sulfate; Disease Models, Animal; Female; Humans; Intestinal Mucosa; Kaplan-Meier Estimate; Macrophages; Male; Mechanistic Target of Rapamycin Complex 2; Mice; Mice, Transgenic; Morpholines; Osteopontin; Primary Cell Culture; Prognosis; Survival Rate | 2019 |
Beneficial effects of dual TORC1/2 inhibition on chronic experimental colitis.
AZD8055, a new immunosuppressive reagent, a dual TORC1/2 inhibitor, had been used successfully in animal models for heart transplantation. The aim of this study was to evaluate the effects and mechanisms of AZD8055 on chronic intestinal inflammation.. Dextran sulfate sodium (DSS) - induced chronic colitis was used to investigate the effects of AZD8055 on the development of colitis. Colitis activity was monitored by body weight assessment, colon length, histology and cytokine profile analysis.. AZD8055 treatment significantly alleviated the severity of colitis, as assessed by colonic length and colonic damage. In addition, AZD8055 treatment decreased the colonic CD4+ T cell numbers and reduced both Th1 and Th17 cell activation and cytokine production. The percentages of Treg cells in the colon were also expanded by AZD8055 treatment. Furthermore, AZD8055 effectively inhibited mTOR downstream proteins and signal transducer and activator of transcription related proteins in CD4+ T cells of intestinal lamina propria.. These findings increased our understanding of DSS-induced colitis and shed new lights on mechanisms of digestive tract chronic inflammation. Dual TORC1/2 inhibition showed potent anti-inflammatory and immune regulation effects by targeting critical signaling pathways. The results supported the strategy of using dual mTOR inhibitor to treat inflammatory bowel disease. Topics: Adenosine Triphosphate; Animals; Chronic Disease; Colitis; Dextran Sulfate; Disease Models, Animal; Heart Transplantation; Humans; Inflammatory Bowel Diseases; Janus Kinases; Male; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Mice; Mice, Inbred C57BL; Morpholines; Signal Transduction; STAT Transcription Factors | 2019 |
Mechanistic Target of Rapamycin-Independent Antidepressant Effects of (R)-Ketamine in a Social Defeat Stress Model.
The role of the mechanistic target of rapamycin (mTOR) signaling in the antidepressant effects of ketamine is controversial. In addition to mTOR, extracellular signal-regulated kinase (ERK) is a key signaling molecule in prominent pathways that regulate protein synthesis. (R)-Ketamine has a greater potency and longer-lasting antidepressant effects than (S)-ketamine. Here we investigated whether mTOR signaling and ERK signaling play a role in the antidepressant effects of two enantiomers.. The effects of mTOR inhibitors (rapamycin and AZD8055) and an ERK inhibitor (SL327) on the antidepressant effects of ketamine enantiomers in the chronic social defeat stress (CSDS) model (n = 7 or 8) and on those of ketamine enantiomers in these signaling pathways in mouse brain regions were examined.. The intracerebroventricular infusion of rapamycin or AZD8055 blocked the antidepressant effects of (S)-ketamine, but not (R)-ketamine, in the CSDS model. Furthermore, (S)-ketamine, but not (R)-ketamine, significantly attenuated the decreased phosphorylation of mTOR and its downstream effector, ribosomal protein S6 kinase, in the prefrontal cortex of susceptible mice after CSDS. Pretreatment with SL327 blocked the antidepressant effects of (R)-ketamine but not (S)-ketamine. Moreover, (R)-ketamine, but not (S)-ketamine, significantly attenuated the decreased phosphorylation of ERK and its upstream effector, mitogen-activated protein kinase/ERK kinase, in the prefrontal cortex and hippocampal dentate gyrus of susceptible mice after CSDS.. This study suggests that mTOR plays a role in the antidepressant effects of (S)-ketamine, but not (R)-ketamine, and that ERK plays a role in (R)-ketamine's antidepressant effects. Thus, it is unlikely that the activation of mTOR signaling is necessary for antidepressant actions of (R)-ketamine. Topics: Aminoacetonitrile; Animals; Antidepressive Agents; Brain; Chronic Disease; Depressive Disorder; Disease Models, Animal; Dominance-Subordination; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Ketamine; Male; Mice, Inbred C57BL; Morpholines; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Stress, Psychological; TOR Serine-Threonine Kinases | 2018 |
Tumor microenvironment confers mTOR inhibitor resistance in invasive intestinal adenocarcinoma.
Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is frequently activated in cancers and can be counteracted with the clinical mTORC1 inhibitors everolimus and temsirolimus. Although mTORC1 and dual mTORC1/2 inhibitors are currently under development to treat various malignancies, the emergence of drug resistance has proven to be a major complication. Using the cis-Apc/Smad4 mouse model of locally invasive intestinal adenocarcinoma, we show that administration of everolimus or the dual mTORC1/2 inhibitor AZD8055 significantly reduces the growth of intestinal tumors. In contrast, although everolimus treatment at earlier phase of tumor progression delayed invasion of the tumors, both inhibitors exhibited little effect on blocking invasion of the tumors when administered later in their progression. Biochemical and immunohistochemical analyses revealed that treatment of cis-Apc/Smad4 mice with everolimus or AZD8055 induced marked increases in epidermal growth factor receptor (EGFR) and MEK/ERK signaling in tumor epithelial and stromal cells, respectively. Notably, co-administration of AZD8055 and the EGFR inhibitor erlotinib or the MEK inhibitor trametinib was sufficient to suppress tumor invasion in cis-Apc/Smad4 mice. These data indicate that mTOR inhibitor resistance in invasive intestinal tumors involves feedback signaling from both cancer epithelial and stromal cells, highlighting the role of tumor microenvironment in drug resistance, and support that simultaneous inhibition of mTOR and EGFR or MEK may be more effective in treating colon cancer. Topics: Adenocarcinoma; Animals; Antineoplastic Agents; Blotting, Western; Cell Line, Tumor; Disease Models, Animal; Drug Resistance, Neoplasm; ErbB Receptors; Erlotinib Hydrochloride; Everolimus; Gene Expression Regulation, Neoplastic; HCT116 Cells; HT29 Cells; Humans; Intestinal Neoplasms; MAP Kinase Signaling System; Mice, 129 Strain; Mice, Inbred C57BL; Morpholines; Neoplasm Invasiveness; Sirolimus; TOR Serine-Threonine Kinases; Tumor Microenvironment | 2017 |
mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile.
It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cell Differentiation; Cell Proliferation; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Inflammation Mediators; Male; Mice; Mice, Inbred C57BL; Morpholines; T-Lymphocyte Subsets; T-Lymphocytes, Regulatory; Th1 Cells; Th17 Cells; TOR Serine-Threonine Kinases | 2016 |
Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats.
Here, we aimed to study the role and underlying mechanism of mTOR in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experiment 1, the time course of mTOR activation in the cortex following SAH. Experiment 2, the role of mTOR in SAH-induced EBI. Adult SD rats were divided into four groups: sham group (n=18), SAH+vehicle group (n=18), SAH+rapamycin group (n=18), SAH+AZD8055 group (n=18). Experiment 3, we incubated enriched microglia with OxyHb. Rapamycin and AZD8055 were also used to demonstrate the mTOR's role on microglial polarization in vitro. The phosphorylation levels of mTOR and its substrates were significantly increased and peaked at 24h after SAH. Rapamycin or AZD8055 markedly decreased the phosphorylation levels of mTOR and its substrates and the activation of microglia in vivo, and promoted the microglial polarization from M1 phenotype to M2 phenotype. In addition, administration of rapamycin and AZD8055 following SAH significantly ameliorated EBI, including neuronal apoptosis, neuronal necrosis, brain edema and blood-brain barrier permeability. Our findings suggested that the rapamycin and AZD8055 could attenuate the development of EBI in this SAH model, possibly through inhibiting the activation of microglia by mTOR pathway. Topics: Animals; Apoptosis; Blood-Brain Barrier; Brain Edema; Capillary Permeability; Cell Polarity; Cells, Cultured; Disease Models, Animal; Microglia; Morpholines; Necrosis; Neurons; Neuroprotective Agents; Phosphorylation; Random Allocation; Rats, Sprague-Dawley; Sirolimus; Subarachnoid Hemorrhage; TOR Serine-Threonine Kinases | 2016 |
mTOR inhibition induces EGFR feedback activation in association with its resistance to human pancreatic cancer.
The mammalian target of rapamycin (mTOR) is dysregulated in diverse cancers and contributes to tumor progression and drug resistance. The first generation of mTOR inhibitors have failed to show clinical efficiency in treating pancreatic cancers due in part to the feedback relief of the insulin-like growth factor-1 receptor (IGF-1R)-AKT signaling pathway. The second generation of mTOR inhibitors, such as AZD8055, could inhibit AKT activation upon mTOR complex 2 (mTORC2) inhibition. However, whether this generation of mTOR inhibitors can obtain satisfactory activities in pancreatic cancer therapy remains unclear. In this study, we found AZD8055 did not show great improvement compared with everolimus, AZD8055 induced a temporal inhibition of AKT kinase activities and AKT was then rephosphorylated. Additionally, we found that AZD8055-induced transient AKT inhibition increased the expression and activation of epidermal growth factor receptor (EGFR) by releasing its transcriptional factors Fork-head box O 1/3a (FoxO1/3a), which might contribute to cell resistance to AZD8055. The in vitro and in vivo experiments further indicated the combination of AZD8055 and erlotinib synergistically inhibited the mTORC1/C2 signaling pathway, EGFR/AKT feedback activation, and cell growth, as well as suppressed the progression of pancreatic cancer in a xenograft model. This study provides a rationale and strategy for overcoming AZD8055 resistance by a combined treatment with the EGFR inhibitor erlotinib in pancreatic cancer therapy. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; ErbB Receptors; Erlotinib Hydrochloride; Female; Forkhead Transcription Factors; Humans; Morpholines; Pancreatic Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quinazolines; Signal Transduction; TOR Serine-Threonine Kinases; Tumor Burden; Up-Regulation; Xenograft Model Antitumor Assays | 2015 |
Pre-clinical study of drug combinations that reduce breast cancer burden due to aberrant mTOR and metabolism promoted by LKB1 loss.
Cancer therapies that simultaneously target activated mammalian target of rapamycin (mTOR) and cell metabolism are urgently needed. The goal of our study was to identify therapies that effectively inhibited both mTOR activity and cancer cell metabolism in primary tumors in vivo. Using our mouse model of spontaneous breast cancer promoted by loss of LKB1 expression in an ErbB2 activated model; referred to as LKB1-/-NIC mice, we evaluated the effect of novel therapies in vivo on primary tumors. Treatment of LKB1-/-NIC mice with AZD8055 and 2-DG mono-therapies significantly reduced mammary gland tumorigenesis by inhibiting mTOR pathways and glycolytic metabolism; however simultaneous inhibition of these pathways with AZD8055/2-DG combination was significantly more effective at reducing tumor volume and burden. At the molecular level, combination treatment inhibited mTORC1/mTORC2 activity, selectively inhibited mitochondria function and blocked MAPK pro-survival signaling responsible for the ERK-p90RSK feedback loop. Our findings suggest that loss of LKB1 expression be considered a marker for metabolic dysfunction given its role in regulating AMPK and mTOR function. Finally, the outcome of our pre-clinical study confirms therapies that simultaneously target mTORC1/mTORC2 and glycolytic metabolism in cancer produce the best therapeutic outcome for the treatment of patients harboring metabolically active HER2 positive breast cancers. Topics: AMP-Activated Protein Kinases; Animals; Antineoplastic Combined Chemotherapy Protocols; Deoxyglucose; Disease Models, Animal; Female; Glycolysis; Imidazoles; Mammary Neoplasms, Experimental; Mice; Mice, Transgenic; Molecular Targeted Therapy; Morpholines; Protein Serine-Threonine Kinases; Quinolines; Signal Transduction; TOR Serine-Threonine Kinases | 2014 |
Atg4b-dependent autophagic flux alleviates Huntington's disease progression.
The accumulation of aggregated mutant huntingtin (mHtt) inclusion bodies is involved in Huntigton's disease (HD) progression. Medium sized-spiny neurons (MSNs) in the corpus striatum are highly vulnerable to mHtt aggregate accumulation and degeneration, but the mechanisms and pathways involved remain elusive. Here we have developed a new model to study MSNs degeneration in the context of HD. We produced organotypic cortico-striatal slice cultures (CStS) from HD transgenic mice mimicking specific features of HD progression. We then show that induction of autophagy using catalytic inhibitors of mTOR prevents MSNs degeneration in HD CStS. Furthermore, disrupting autophagic flux by overexpressing Atg4b in neurons and slice cultures, accelerated mHtt aggregation and neuronal death, suggesting that Atg4b-dependent autophagic flux influences HD progression. Under these circumstances induction of autophagy using catalytic inhibitors of mTOR was inefficient and did not affect mHtt aggregate accumulation and toxicity, indicating that mTOR inhibition alleviates HD progression by inducing Atg4b-dependent autophagic flux. These results establish modulators of Atg4b-dependent autophagic flux as new potential targets in the treatment of HD. Topics: Animals; Autophagy; Autophagy-Related Proteins; Biocatalysis; Cerebral Cortex; Cysteine Endopeptidases; Disease Models, Animal; Disease Progression; Huntingtin Protein; Huntington Disease; Morpholines; Neostriatum; Nerve Degeneration; Nerve Tissue Proteins; Neurons; Nuclear Proteins; Phenotype; TOR Serine-Threonine Kinases | 2013 |
Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo.
To provide rationale for using phosphoinositide 3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) pathway inhibitors to treat rhabdomyosarcomas, a major cause of pediatric and adolescent cancer deaths.. The prevalence of PI3K/MAPK pathway activation in rhabdomyosarcoma clinical samples was assessed using immunohistochemistry. Compensatory signaling and cross-talk between PI3K/MAPK pathways was determined in rhabdomyosarcoma cell lines following p110α short hairpin RNA-mediated depletion. Pharmacologic inhibition of reprogrammed signaling in stable p110α knockdown lines was used to determine the target-inhibition profile inducing maximal growth inhibition. The in vitro and in vivo efficacy of inhibitors of TORC1/2 (AZD8055), MEK (AZD6244), and P13K/mTOR (NVP-BEZ235) was evaluated alone and in pairwise combinations.. PI3K pathway activation was seen in 82.5% rhabdomyosarcomas with coactivated MAPK in 36% and 46% of alveolar and embryonal subtypes, respectively. p110α knockdown in cell lines over the short and long term was associated with compensatory expression of other p110 isoforms, activation of the MAPK pathway, and cross-talk to reactivate the PI3K pathway. Combinations of PI3K pathway and MAP-ERK kinase (MEK) inhibitors synergistically inhibited cell growth in vitro. Treatment of RD cells with AZD8055 plus AZD6244 blocked reciprocal pathway activation, as evidenced by reduced AKT/ERK/S6 phosphorylation. In vivo, the synergistic effect on growth and changes in pharmacodynamic biomarkers was recapitulated using the AZD8055/AZD6244 combination but not NVP-BEZ235/AZD6244. Pharmacokinetic analysis provided evidence of drug-drug interaction with both combinations.. Dual PI3K/MAPK pathway activation and compensatory signaling in both rhabdomyosarcoma subtypes predict a lack of clinical efficacy for single agents targeting either pathway, supporting a therapeutic strategy combining a TORC1/2 with a MEK inhibitor. Topics: Animals; Antineoplastic Agents; Benzimidazoles; Cell Line, Tumor; Class I Phosphatidylinositol 3-Kinases; Disease Models, Animal; Drug Synergism; Enzyme Activation; Female; Gene Knockdown Techniques; Humans; Mitogen-Activated Protein Kinases; Morpholines; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins p21(ras); Rhabdomyosarcoma; Signal Transduction; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2013 |