(5-(2-4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2-3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol has been researched along with Chronic-Disease* in 2 studies
2 other study(ies) available for (5-(2-4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2-3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol and Chronic-Disease
Article | Year |
---|---|
Beneficial effects of dual TORC1/2 inhibition on chronic experimental colitis.
AZD8055, a new immunosuppressive reagent, a dual TORC1/2 inhibitor, had been used successfully in animal models for heart transplantation. The aim of this study was to evaluate the effects and mechanisms of AZD8055 on chronic intestinal inflammation.. Dextran sulfate sodium (DSS) - induced chronic colitis was used to investigate the effects of AZD8055 on the development of colitis. Colitis activity was monitored by body weight assessment, colon length, histology and cytokine profile analysis.. AZD8055 treatment significantly alleviated the severity of colitis, as assessed by colonic length and colonic damage. In addition, AZD8055 treatment decreased the colonic CD4+ T cell numbers and reduced both Th1 and Th17 cell activation and cytokine production. The percentages of Treg cells in the colon were also expanded by AZD8055 treatment. Furthermore, AZD8055 effectively inhibited mTOR downstream proteins and signal transducer and activator of transcription related proteins in CD4+ T cells of intestinal lamina propria.. These findings increased our understanding of DSS-induced colitis and shed new lights on mechanisms of digestive tract chronic inflammation. Dual TORC1/2 inhibition showed potent anti-inflammatory and immune regulation effects by targeting critical signaling pathways. The results supported the strategy of using dual mTOR inhibitor to treat inflammatory bowel disease. Topics: Adenosine Triphosphate; Animals; Chronic Disease; Colitis; Dextran Sulfate; Disease Models, Animal; Heart Transplantation; Humans; Inflammatory Bowel Diseases; Janus Kinases; Male; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Mice; Mice, Inbred C57BL; Morpholines; Signal Transduction; STAT Transcription Factors | 2019 |
Mechanistic Target of Rapamycin-Independent Antidepressant Effects of (R)-Ketamine in a Social Defeat Stress Model.
The role of the mechanistic target of rapamycin (mTOR) signaling in the antidepressant effects of ketamine is controversial. In addition to mTOR, extracellular signal-regulated kinase (ERK) is a key signaling molecule in prominent pathways that regulate protein synthesis. (R)-Ketamine has a greater potency and longer-lasting antidepressant effects than (S)-ketamine. Here we investigated whether mTOR signaling and ERK signaling play a role in the antidepressant effects of two enantiomers.. The effects of mTOR inhibitors (rapamycin and AZD8055) and an ERK inhibitor (SL327) on the antidepressant effects of ketamine enantiomers in the chronic social defeat stress (CSDS) model (n = 7 or 8) and on those of ketamine enantiomers in these signaling pathways in mouse brain regions were examined.. The intracerebroventricular infusion of rapamycin or AZD8055 blocked the antidepressant effects of (S)-ketamine, but not (R)-ketamine, in the CSDS model. Furthermore, (S)-ketamine, but not (R)-ketamine, significantly attenuated the decreased phosphorylation of mTOR and its downstream effector, ribosomal protein S6 kinase, in the prefrontal cortex of susceptible mice after CSDS. Pretreatment with SL327 blocked the antidepressant effects of (R)-ketamine but not (S)-ketamine. Moreover, (R)-ketamine, but not (S)-ketamine, significantly attenuated the decreased phosphorylation of ERK and its upstream effector, mitogen-activated protein kinase/ERK kinase, in the prefrontal cortex and hippocampal dentate gyrus of susceptible mice after CSDS.. This study suggests that mTOR plays a role in the antidepressant effects of (S)-ketamine, but not (R)-ketamine, and that ERK plays a role in (R)-ketamine's antidepressant effects. Thus, it is unlikely that the activation of mTOR signaling is necessary for antidepressant actions of (R)-ketamine. Topics: Aminoacetonitrile; Animals; Antidepressive Agents; Brain; Chronic Disease; Depressive Disorder; Disease Models, Animal; Dominance-Subordination; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Ketamine; Male; Mice, Inbred C57BL; Morpholines; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Stress, Psychological; TOR Serine-Threonine Kinases | 2018 |